Multiparametric quantitative and texture 18F-FDG PET/CT analysis for primary malignant tumour grade differentiation
Tóm tắt
18F-FDG positron emission tomography/computed tomography (PET/CT) is a successfully used imaging modality in oncology. The aim of the study was to investigate a connection of epithelial tumour differentiation grade with both semiquantitative and quantitative metabolic PET data focusing on creation of multiparametric model of tumour grade prediction utilising both standardised uptake value-based and texture-based 18F-FDG PET parameters and to investigate an influence of different image segmentation techniques on these parameters and modelling. 18F-FDG PET/CT data from 84 patients with epithelial malignant tumours was retrospectively analysed to create sets of both conventional semiquantitative (based on standardised uptake values), volumetric, and quantitative texture metabolic parameters of primary tumours with four different segmentation techniques. Most of the calculated volumetric and texture parameters showed to be influenced by segmentation technique. There was no significant difference in values of only three parameters, in all four segmentation methods: homogeneity, energy, and sphericity. Almost every extracted parameter in all segmentation technique subsets showed significant ability to discriminate individual tumour grade versus the subset of remaining two tumour grades. No parameters were able to discriminate all three tumour grades separately simultaneously or without the overlapping of threshold values. Group method of data handling (GMDH) modelling included all the above-mentioned extracted parameters. The highest value to discriminate tumour grade was achieved using ITK-SNAP segmentation, with an accuracy ranging from 91 to 100%. Multiparametric modelling with GMDH utilising both semiquantitative and quantitative texture metabolic PET parameters seems to be an interesting tool for non-invasive malignant epithelial tumours grade differentiation.
Tài liệu tham khảo
Fletcher JW, Djulbegovic B, Soares H et al (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49:480–508. https://doi.org/10.2967/jnumed.107.047787
Hoppe RT, Advani RH, Ai WZ et al (2018) NCCN guidelines insights: Hodgkin lymphoma, version 1.2018. J Natl Compr Cancer Netw 16:245–254. https://doi.org/10.6004/jnccn.2018.0013
Gallamini A, Barrington SF, Biggi A et al (2014) The predictive role of interim positron emission tomography for Hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the Deauville five-point scale. Haematologica 99:1107–1113. https://doi.org/10.3324/haematol.2013.103218
Arimoto MK, Nakamoto Y, Higashi T, Ishimori T, Ishibashi M, Togashi K (2018) Intra- and inter-observer agreement in the visual interpretation of interim 18F-FDG PET/CT in malignant lymphoma: influence of clinical information. Acta Radiol 59:1218–1224. https://doi.org/10.1177/0284185117751279
Sher A, Lacoeuille F, Fosse P et al (2016) For avid glucose tumors, the SUV peak is the most reliable parameter for [18F]FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res 6:21. https://doi.org/10.1186/s13550-016-0177-8
Choi ES, Ha SG, Kim HS, Ha JH, Paeng JC, Han I (2013) Total lesion glycolysis by 18F-FDG PET/CT is a reliable predictor of prognosis in soft-tissue sarcoma. Eur J Nucl Med Mol Imaging 40:1836–1842. https://doi.org/10.1007/s00259-013-2511-y
Casasnovas RO, Meignan M, Berriolo-Riedinger A et al (2011) SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma. Blood 118:37–43. https://doi.org/10.1182/blood-2010-12-327767
Moon SH, Hyun SH, Choi JY (2013) Prognostic significance of volume-based PET parameters in cancer patients. Korean J Radiol 14:1. https://doi.org/10.3348/kjr.2013.14.1.1
Costelloe CM, Macapinlac HA, Madewell JE et al (2009) 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med 50:340–347. https://doi.org/10.2967/jnumed.108.058461
Kajáry K, Tőkés T, Dank M, Kulka J, Szakáll S Jr, Lengyel Z (2015) Correlation of the value of 18F-FDG uptake, described by SUVmax, SUVavg, metabolic tumour volume and total lesion glycolysis, to clinicopathological prognostic factors and biological subtypes in breast cancer. Nucl Med Commun 36:28–37. https://doi.org/10.1097/mnm.0000000000000217
Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446. https://doi.org/10.1016/j.ejca.2011.11.036
Ha S, Choi H, Paeng JC, Cheon GJ (2019) Radiomics in oncological PET/CT: a methodological overview. Nucl Med Mol Imaging 53:14–29. https://doi.org/10.1007/s13139-019-00571-4
Amin MB, Edge S, Greene F et al, (2017) AJCC cancer staging manual. Springer International Publishing, Switzerland.
Boellaard R, Delgado-Bolton R, Oyen WJG et al (2014) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354. https://doi.org/10.1007/s00259-014-2961-x
Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015
Almuzian M, Ghatam HMA, Al-Muzian L (2018) Assessing the validity of ITK-SNAP software package in measuring the volume of upper airway spaces secondary to rapid maxillary expansion. J Orthod Sci 7:7. https://doi.org/10.4103/jos.jos_93_17
Besson FL, Henry T, Meyer C et al (2018) Rapid contour-based segmentation for 18F-FDG PET imaging of lung tumors by using ITK-SNAP: comparison to expert-based segmentation. Radiology 288:277–284. https://doi.org/10.1148/radiol.2018171756
Ivakhnenko AG (1971) Polynomial theory of complex systems. IEEE Trans Syst Man Cybern Syst 4:364–378. https://doi.org/10.1109/tsmc.1971.4308320
Schetinin V, Jakaite L, Nyah N, Novakovic D, Krzanowski W (2018) Feature extraction with GMDH-type neural networks for EEG-based person identification. Int J Neural Syst 28:1750064. https://doi.org/10.1142/s0129065717500642
Abdel-Aal RE (2005) GMDH-based feature ranking and selection for improved classification of medical data. J Biomed Inform 38:456–468. https://doi.org/10.1016/j.jbi.2005.03.003
Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ (2014) A review on segmentation of positron emission tomography images. Comput Biol Med 50:76–96. https://doi.org/10.1016/j.compbiomed.2014.04.014
Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch CM, Nestle U (2008) A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 35:1989–1999. https://doi.org/10.1007/s00259-008-0875-1
Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 55:414–422. https://doi.org/10.2967/jnumed.113.129858
Ha S, Park S, Bang JI, Kim EK, Lee HY (2017) Metabolic radiomics for pretreatment 18F-FDG PET/CT to characterize locally advanced breast cancer: histopathologic characteristics, response to neoadjuvant chemotherapy, and prognosis. Sci Rep 7:1556. https://doi.org/10.1038/s41598-017-01524-7
Hain SF, Curran KM, Beggs AD, Fogelman I, O'Doherty MJ, Maisey MN (2001) FDG-PET as a “metabolic biopsy” tool in thoracic lesions with indeterminate biopsy. Eur J Nucl Med 28:1336–1340. https://doi.org/10.1007/s002590100563
Barrington SF, Mikhaeel NG, Kostakoglu L et al (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol 32:3048–3058. https://doi.org/10.1200/jco.2013.53.5229
Lee JW, Kang KW, Park SH et al (2009) 18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma. Eur J Nucl Med Mol Imaging 36:1574–1582. https://doi.org/10.1007/s00259-009-1133-x
Ghany AFA, Hamed MAG (2015) The diagnostic value of dual phase FDG PET CT in grading of gliomas. Egypt J Radiol Nucl Med 46:701–705. https://doi.org/10.1016/j.ejrnm.2015.04.011
Nakamura K, Kodama J, Okumura Y, Hongo A, Kanazawa S, Hiramatsu Y (2010) The SUVmax of 18F-FDG PET correlates with histological grade in endometrial cancer. Int J Gynecol Cancer 20:110–115. https://doi.org/10.1111/igc.0b013e3181c3a288
Rakheja R, Probst S (2013) FDG PET/CT as a marker for grading sarcomas and for the individualization of disease management. Imaging Med 5:75–81. https://doi.org/10.2217/iim.12.68