Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3, 011004 (2008)
García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multi-Body Systems—The Real-Time Challenge. Springer, New York (1994)
Negrut, D., Serban, R., Potra, F.A.: A topology based approach for exploiting sparsity in multibody dynamics. Joint formulation. Mech. Struct. Mach. 25, 221–241 (1997). doi: 10.1080/08905459708905288
Serban, R., Negrut, D., Haug, E.J., Potra, F.A.: A topology based approach for exploiting sparsity in multibody dynamics in Cartesian formulation. Mech. Struct. Mach. 25, 379–396 (1997). doi: 10.1080/08905459708905295
von Schwerin, R.: Multibody System Simulation: Numerical Methods, Algorithms and Software. Springer, Berlin (1999)
Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005). doi: 10.1017/S0962492904000212
Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972). doi: 10.1016/0045-7825(72)90018-7
Ascher, U.M., Chin, H., Reich, S.: Stabilization of DAEs and invariant manifolds. Numer. Math. 67, 131–149 (1994)
Flores, P., Machado, M., Seabra, E., Tavares da Silva, M.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6 (2011). doi: 10.1115/1.4002338
Lubich, C.: Extrapolation integrators for constrained multibody systems. Impact Comput. Sci. Eng. 3, 213–234 (1991). doi: 10.1016/0899-8248(91)90008-I
Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection method for constrained multibody dynamics. Nonlinear Dyn. 9, 113–130 (1996). doi: 10.1007/BF01833296
Liang, C.G., Lance, G.M.: A differentiable null space method for constrained dynamic analysis. J. Mech. Transm. Autom. Des. 109, 405–411 (1987)
Mani, N.K., Haug, E.J., Atkinson, K.E.: Application of singular value decomposition for analysis of mechanical system dynamics. J. Mech. Transm. Autom. Des. 107, 82–87 (1984)
Kim, S.S., Vanderploeg, M.J.: QR decomposition for state space representation of constrained mechanical dynamical systems. J. Mech. Transm. Autom. Des. 108, 183–188 (1986)
Wehage, R., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained mechanical systems. J. Mech. Des. 104, 247–255 (1982)
Serna, M.A., Avilés, R., García de Jalón, J.: Dynamic analysis of plane mechanisms with lower pairs in basic coordinates. Mech. Mach. Theory 17, 397–403 (1982). doi: 10.1016/0094-114X(82)90032-5
Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)
Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multibody dynamics. Proc. R. Soc. Lond. Ser. A 462, 2097–2117 (2006). doi: 10.1098/rspa.2006.1662
Strang, G.: Linear Algebra and Its Applications, 3rd edn. Harcourth Brace Jovanovich, San Diego (1988)
Wojtyra, M.: Joint reaction forces in multibody systems with redundant constraints. Multibody Syst. Dyn. 14, 23–46 (2005). doi: 10.1007/s11044-005-5967-0
Frączek, J., Wojtyra, M.: Redundant constraints reactions in rigid MBS with Coulomb friction in joints. In: Proc. of the ECCOMAS Thematic Conf. on Multibody Dynamics, Milan, Italy (2007)
Wojtyra, M.: Joint reactions in rigid body mechanisms with dependent constraints. Mech. Mach. Theory 44, 2265–2278 (2009). doi: 10.1016/j.mechmachtheory.2009.07.008
Frączek, J., Wojtyra, M.: Joint reactions solvability in spatial MBS with friction and redundant constraints. In: Proc. of the ECCOMAS Thematic Conf. on Multibody Dynamics, Warsaw, Poland (2009)
Frączek, J., Wojtyra, M.: On the unique solvability of a direct dynamics problem for mechanisms with redundant constraints and Coulomb friction in joints. Mech. Mach. Theory 46, 312–334 (2011). doi: 10.1016/j.mechmachtheory.2010.11.003
Wojtyra, M., Frączek, J.: Joint reactions in overconstrained rigid or flexible body mechanisms. In: Proc. of the ECCOMAS Thematic Conf. on Multibody Dynamics, Brussels, Belgium (2011)
Wojtyra, M., Frączek, J.: Comparison of selected methods of handling redundant constraints in multibody system simulations. J. Comput. Nonlinear Dyn. 8, 021007 (2013). doi: 10.1115/1.4006958
Blajer, W.: Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy. Multibody Syst. Dyn. 8, 141–159 (2002). doi: 10.1023/A:1019581227898
Ruzzeh, B., Kövecses, J.: A penalty formulation for dynamic analysis of redundant mechanical systems. J. Comput. Nonlinear Dyn. 6, 021008 (2011)
González, F., Kövecses, J.: Use of penalty formulations in the dynamic simulation and analysis of redundantly constrained multibody systems. Multibody Syst. Dyn. (2012). doi: 10.1007/s11044-012-9322-y