Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giải pháp bán phân tích đa bước cho hệ thống virus chikungunya
Tóm tắt
Trong bài báo này, chúng tôi đề xuất một giải pháp bán phân tích cho một hệ động lực của các phương trình vi phân mô tả sự lây lan của virus chikungunya trong quần thể người. Để thực hiện điều này, chúng tôi đưa ra một phương pháp hiệu quả dựa trên phương pháp vi phân đã được điều chỉnh, có thể hữu ích cho các hệ động lực. Ở cấp độ số, chúng tôi so sánh các giải pháp thu được với các giải pháp Runge-Kutta bậc 4, và chúng tôi đề xuất một nghiên cứu về tác động của căn bệnh này trong thời gian bùng phát dịch bệnh.
Từ khóa
#virus chikungunya #hệ động lực #phương trình vi phân #phương pháp Runge-KuttaTài liệu tham khảo
Dumont Y, Chiroleu F, Domerg C (2008) On a temporal model for the chikungunya disease: modeling, theory and numerics. Math Biosci 213:80–91
Dumont Y, Chiroleu F (2010) Vector control for the chikungunya disease. Math Biosci Eng 7:313–345
Liu X, Stechlinski P (2015) Application of control strategies to a seasonal model of chikungunya disease. Appl Math Model 39:3194–3220
Müller T, Lauk M, Reinhard et al (2003) Estimation of delay times in biological systems. Ann Biomed Eng 31(11):1423–1439
Allix O, Deü J-F (1997) Delayed-damage modelling for fracture prediction of laminated composites under dynamic loading. Eng Trans 45(1):29–46
Aldramy A, Chamekh M, Jday F (2020) Semi-analytical solution for a system of competition with production a toxin in a chemostat. JMCS 20:155–160. www.isr-publications.com/jmcs
Chamekh M, Elzaki TM, Brik N (2019) Semi-analytical solution for some proportional delay differential equations. SN Appl Sci 1:148
Alshehri A, El Hajji M (2022) Mathematical study for Zika virus transmission with general incidence rate. AIMS Math 7(4):7117–7142
El Hajji M, Albargi AH (2022) A mathematical investigation of an “SVEIR’’ epidemic model for the measles transmission. Math Biosci Eng 19(3):2853–2875
El Hajji M, Sayari S, Zaghdani A (2021) Mathematical analysis of an “SIR’’ epidemic model in a continuous reactor-deterministic and probabilistic approaches. J Korean Math Soc 58:45–67
Evans DJ, Raslan KR (2005) The adomian decomposition method for solving delay differential equation. Int J Comput Math 82(1):49–54
He JH (1997) Variational iteration method for delay differential equations. Commun Nonlinear Sci Numer Simul 2:235–236
Chamekh M, Elzaki TM (2018) Explicit solution for some generalized fluids in laminar flow with slip boundary conditions. J Math Comput Sci 18:272–281
Shakeri F, Dehghan M (2008) Solution of delay differential equations via a homotopy perturbation method. Math Comput Model 48:486–498
Zhou JK (1986) Differential transformation and its application for electrical circuit. Huazhong University Press, Wuuhahn (in Chinese)
Karakoç F, Bereketoǧlu H (2009) Solution of delay differential equation by using differential transform. Int J Comput Math 86(5):1–6
Šmarda Z, Diblík J, Khan Y (2013) Extension of the differential transformation method to nonlinear differential and integrodifferential equations with proportional delays. Adv Differ Equ 2013:69
Wang Y, Liu X (2017) Stability and Hopf bifurcation of a within-host chikungunya virus infection model with two delays. Math Comput Simul 138:31–48
El Hajji M (2021) Modelling and optimal control for Chikungunya disease. Theory Biosci. 140:27–44
El Hajji M, Zaghdani A, Sayari S (2021) Mathematical analysis and optimal control for Chikungunya virus with two routes of infection with nonlinear incidence rate. Int J Biomath 15:1:2150088
Gökdoǧan A, Merdan M, Yildirim A (2012) A multistage differential transformation method for approximate solution of Hantavirus infection model. Commun Nonlinear Sci Numer Simul 17(1):1–8
Gökdoǧan A, Merdan M, Yildirim A (2012) Adaptive multi-step differential transformation method to solving nonlinear differential equations. Math Comput Model 55(3–4):761–769