PET/MRI đa tham số nâng cao đặc trưng khối u ở bệnh nhân ung thư cổ tử cung

Sahar Ahangari1, Flemming Littrup Andersen1, Naja Liv Hansen1, Trine Jakobi Nøttrup2, Anne Kiil Berthelsen2, J. Kallehauge3, Ivan R. Vogelius2, Andreas Kjær1, Adam Espe Hansen1, Barbara Fischer1
1Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
2Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
3Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark

Tóm tắt

Tóm tắt Mục tiêu Khái niệm y học cá nhân hóa đã nâng cao nhận thức về tầm quan trọng của sự khác biệt giữa và trong các khối u cho việc điều trị ung thư. Mục tiêu của nghiên cứu này là khám phá việc sử dụng PET/MRI đa tham số đồng thời trước khi hóa trị xạ trị cho ung thư cổ tử cung nhằm phân loại và đánh giá tính không đồng nhất của các khối u. Phương pháp Mười bệnh nhân có ung thư cổ tử cung nguyên phát đã được xác nhận bằng mô học được thăm khám bằng PET/MRI đa tham số 68Ga-NODAGA-E[c(RGDyK)]2 để lập kế hoạch điều trị bức xạ sau khi thực hiện 18F-FDG-PET/CT chẩn đoán. Các giá trị hấp thu chuẩn hóa (SUV) của RGD và FDG, MRI khuếch tán và hệ số khuếch tán biểu kiến (ADC) thu được và các bản đồ dược động học được lấy từ MRI tăng cường tương phản động với mô hình Tofts (iAUC60, Ktrans, ve, và kep) cũng được đưa vào phân tích. Quan hệ không gian giữa các tham số hình ảnh chức năng trong các khối u đã được xem xét bằng phân tích tương quan và biểu đồ chung tại mức voxel. Khả năng của hình ảnh đa tham số trong việc xác định các lớp mô khối u đã được khám phá bằng cách sử dụng phân tích cụm dựa trên mô hình hỗn hợp Gaussian 3D không giám sát. Kết quả Hình ảnh MRI và PET chức năng của các khối u cổ tử cung có vẻ khác biệt cả giữa các bệnh nhân và không gian trong các khối u, và các mối quan hệ giữa các tham số thay đổi mạnh mẽ trong nhóm bệnh nhân. Mối tương quan không gian mạnh nhất được quan sát giữa việc hấp thu FDG và ADC (trung vị r =  − 0.7). Có sự tương quan mức voxel vừa phải giữa việc hấp thu RGD và FDG, và sự tương quan yếu giữa tất cả các phương pháp khác. Các mối quan hệ rõ ràng giữa ADC và việc hấp thu RGD cũng như giữa ADC và việc hấp thu FDG rõ ràng xuất hiện trong các biểu đồ chung. Phân tích cụm sử dụng sự kết hợp giữa ADC, FDG và sự hấp thu RGD đã gợi ý về các lớp mô có thể liên quan đến các tiểu khối u.

Từ khóa

#y học cá nhân hóa #ung thư cổ tử cung #PET/MRI đa tham số #tính không đồng nhất khối u #yếu tố hình ảnh chức năng

Tài liệu tham khảo

Ahangari S, Hansen NL, Olin AB, Nøttrup TJ, Ryssel H, Berthelsen AK et al (2021) Toward PET/MRI as one-stop shop for radiotherapy planning in cervical cancer patients. Acta Oncol (madr). https://doi.org/10.1080/0284186X.2021.1936164

Beaton L, Bandula S, Gaze MN, Sharma RA (2019) How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer 120(8):779–790. https://doi.org/10.1038/s41416-019-0412-y

Caresia-Aróztegui AP, Delgado-Bolton RC, Alvarez-Ruiz S, del Puig Cózar-Santiago M, Orcajo-Rincon J, de Arcocha-Torres M et al (2019) 18F-FDG PET/CT in locally advanced cervical cancer: A review. Rev Española Med Nucl e Imagen Mol 38(1):59–68

Danhier F, Le BA, Préat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9(11):2961–2973

Daniel M, Andrzejewski P, Sturdza A, Majercakova K, Baltzer P, Pinker K et al (2017) Impact of hybrid PET/MR technology on multiparametric imaging and treatment response assessment of cervix cancer. Radiother Oncol 125(3):420–425. https://doi.org/10.1016/j.radonc.2017.10.036

Dappa E, Elger T, Hasenburg A, Düber C, Battista MJ, Hötker AM (2017) The value of advanced MRI techniques in the assessment of cervical cancer: a review. Insights Imaging 8(5):471–481

Davnall F, Yip CSP, Ljungqvist G, Selmi M, Ng F, Sanghera B et al (2012) Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging 3(6):573–589

Divine MR, Katiyar P, Kohlhofer U, Quintanilla-Martinez L, Pichler BJ, Disselhorst JA (2015) A population-based Gaussian mixture model incorporating 18F-FDG PET and diffusion-weighted MRI quantifies tumor tissue classes. J Nucl Med 57(3):473–479

Dröge LH, von Sivers FF, Schirmer MA, Wolff HA (2021) Conventional 3D conformal radiotherapy and volumetric modulated arc therapy for cervical cancer: comparison of clinical results with special consideration of the influence of patient- and treatment-related parameters. Strahlentherapie Und Onkol 197(6):520–527

Durante S, Dunet V, Gorostidi F, Mitsakis P, Schaefer N, Delage J et al (2020) Head and neck tumors angiogenesis imaging with 68Ga-NODAGA-RGD in comparison to 18F-FDG PET/CT: a pilot study. EJNMMI Res 10(1):1–11

Esfahani SA, Torrado-Carvajal A, Amorim BJ, Groshar D, Domachevsky L, Bernstine H et al (2021) PET/MRI and PET/CT radiomics in primary cervical cancer: a pilot study on the correlation of pelvic PET, MRI, and CT derived image features. Mol Imaging Biol 24:60–69

Even AJG, De Ruysscher D, van Elmpt W (2016) The promise of multiparametric imaging in oncology: How do we move forward? Eur J Nucl Med Mol Imaging 43(7):1195–1198. https://doi.org/10.1007/s00259-016-3361-1

Even AJG, Reymen B, La Fontaine MD, Das M, Mottaghy FM, Belderbos JSA et al (2017) Clustering of multi-parametric functional imaging to identify high-risk subvolumes in non-small cell lung cancer. Radiother Oncol 125(3):379–384. https://doi.org/10.1016/j.radonc.2017.09.041

Fields EC, Weiss E (2016) A practical review of magnetic resonance imaging for the evaluation and management of cervical cancer. Radiat Oncol 11(1):1–10. https://doi.org/10.1186/s13014-016-0591-0

Gao S, Du S, Lu Z, Xin J, Gao S, Sun H (2020) Multiparametric PET/MR (PET and MR-IVIM) for the evaluation of early treatment response and prediction of tumor recurrence in patients with locally advanced cervical cancer. Eur Radiol 30(2):1191–1201

Gatenby RA, Grove O, Gillies RJ (2013) Quantitative imaging in cancer evolution and ecology. Radiology 269(1):8–15

Gladwish A, Milosevic M, Fyles A, Xie J, Halankar J, Metser U et al (2016) Association of apparent diffusion coefficient with disease recurrence in patients with locally advanced cervical cancer treated with radical chemotherapy and radiation therapy. Radiology 279(1):158–166

Gong J, Wang NAN, Bian L, Wang MIN, Ye M, Wen NA et al (2019) Cervical cancer evaluated with integrated 18 F-FDG PET/MR. Oncol Lett 18:1815–1823

Han K, Croke J, Foltz W, Metser U, Xie J, Shek T et al (2016) A prospective study of DWI, DCE-MRI and FDG PET imaging for target delineation in brachytherapy for cervical cancer. Radiother Oncol 120(3):519–525. https://doi.org/10.1016/j.radonc.2016.08.002

Harry VN, Persad S, Bassaw B, Parkin D (2021) Diffusion-weighted MRI to detect early response to chemoradiation in cervical cancer: a systematic review and meta-analysis. Gynecol Oncol Rep 38:100883. https://doi.org/10.1016/j.gore.2021.100883

Hylton N (2006) Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol 24(20):3293–3298

Kobayashi R, Yamashita H, Okuma K, Ohtomo K, Nakagawa K (2016) Details of recurrence sites after definitive radiation therapy for cervical cancer. J Gynecol Oncol 27(2):1–13

Lai AYT, Perucho JAU, Xu X, Hui ES, Lee EYP (2017) Concordance of FDG PET/CT metabolic tumour volume versus DW-MRI functional tumour volume with T2-weighted anatomical tumour volume in cervical cancer. BMC Cancer 17(1):1–8

Le BD (2013) Apparent diffusion coefficient and beyond: what diffusion mr imaging can tell us about tissue structure. Radiology 268(2):318–322

Lee EYP, Hui ESK, Chan KKL, Tse KY, Kwong WK, Chang TY et al (2015) Relationship between intravoxel incoherent motion diffusion-weighted MRI and dynamic contrast-enhanced MRI in tissue perfusion of cervical cancers. J Magn Reson Imaging 42(2):454–459

Leibfarth S, Simoncic U, Mönnich D, Welz S, Schmidt H, Schwenzer N et al (2016) Analysis of pairwise correlations in multi-parametric PET/MR data for biological tumor characterization and treatment individualization strategies. Eur J Nucl Med Mol Imaging 43(7):1199–1208

Lim K, Small W, Portelance L, Creutzberg C, Jürgenliemk-Schulz IM, Mundt A et al (2011) Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys 79(2):348–355

Lin AJ, Dehdashti F, Massad LS, Thaker PH, Powell MA, Mutch DG et al (2021) Long-term outcomes of cervical cancer patients treated with definitive chemoradiation following a complete metabolic response. Clin Oncol 33(5):300–306. https://doi.org/10.1016/j.clon.2021.01.010

Litjens GJS, Heisen M, Buurman J, Ter HaarRomeny BM (2010) Pharmacokinetic models in clinical practice: What model to use for DCE-MRI of the breast? In: 2010 7th IEEE international symposium on biomed imaging from nano to macro, ISBI 2010—proceedings 3(3):185–188

Liu S (2009) Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem 20(12):2199–2213

Liu Y, Zhang Y, Cheng R, Liu S, Qu F, Yin X et al (2019) Radiomics analysis of apparent diffusion coefficient in cervical cancer: a preliminary study on histological grade evaluation. J Magn Reson Imaging 49(1):280–290

Lundemann M, Munck af Rosenschöld P, Muhic A, Larsen VA, Poulsen HS, Engelholm SA et al (2019) Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma. Eur J Nucl Med Mol Imaging 46(3):603–613

Mannelli L, Patterson AJ, Zahra M, Priest AN, Graves MJ, Lomas DJ et al (2010) Evaluation of nonenhancing tumor fraction assessed by dynamic contrast-enhanced MRI subtraction as a predictor of decrease in tumor volume in response to chemoradiotherapy in advanced cervical cancer. Am J Roentgenol 195(2):524–527

Mayr NA, Huang Z, Wang JZ, Lo SS, Fan JM, Grecula JC et al (2012) Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: Cervical cancer as a model. Int J Radiat Oncol Biol Phys 83(3):972–979. https://doi.org/10.1016/j.ijrobp.2011.08.011

Metz S, Ganter C, Lorenzen S, Van Marwick S, Herrmann K, Lordick F et al (2010) Phenotyping of tumor biology in patients by multimodality multiparametric imaging: relationship of microcirculation, αvβ3 expression, and glucose metabolism. J Nucl Med 51(11):1691–1698

Metz S, Ganter C, Lorenzen S, Van Marwick S, Holzapfel K, Herrmann K et al (2015) Multiparametric MR and PET imaging of intratumoral biological heterogeneity in patients with metastatic lung cancer using voxel-by-voxel analysis. PLoS ONE 10(7):1–14

O’Connor JPB, Aboagye EO, Adams JE, Aerts HJWL, Barrington SF, Beer AJ et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14(3):169–186

Olin A, Krogager L, Rasmussen JH, Andersen FL, Specht L, Beyer T et al (2018) Preparing data for multiparametric PET/MR imaging: Influence of PET point spread function modelling and EPI distortion correction on the spatial correlation of [18F]FDG-PET and diffusion-weighted MRI in head and neck cancer. Phys Medica. 2019(61):1–7. https://doi.org/10.1016/j.ejmp.2019.04.006

Olsen JR, Esthappan J, Dewees T, Narra VR, Dehdashti F, Siegel BA et al (2013) Tumor volume and subvolume concordance between FDG-PET/CT and diffusion-weighted MRI for squamous cell carcinoma of the cervix. J Magn Reson Imaging 37(2):431–434

Pötter R, Tanderup K, Schmid MP, Jürgenliemk-Schulz I, Haie-Meder C, Fokdal LU et al (2021) MRI-guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE-I): a multicentre prospective cohort study. Lancet Oncol 22(4):538–547

Pötter R, Lindegaard J, Kirisits C, Juergenliemk-schulz I, Leeuw A De, Fortin I, et al. (2015) Image guided intensity modulated External beam radiochemotherapy and MRI based adaptive BRAchytherapy in locally advanced CErvical cancer, EMBRACE-II. :0–132

Rasmussen JH, Nørgaard M, Hansen AE, Vogelius IR, Aznar MC, Johannesen HH et al (2017) Feasibility of multiparametric imaging with PET/MR in head and neck Squamous cell carcinoma. J Nucl Med 58(1):69–74

Schwartz M, Gavane SC, Bou-Ayache J, Kolev V, Zakashansky K, Prasad-Hayes M et al (2018) Feasibility and feasibility and diagnostic performance of hybrid pet/mri compared with pet/ct for gynecological malignancies: a prospective pilot study. Abdom Radiol. 43(12):3462–3467. https://doi.org/10.1007/s00261-018-1665-2

Shih IL, Yen RF, Chen CA, Cheng WF, Chen B, Chang YH et al (2021) PET/MRI in cervical cancer: associations between imaging biomarkers and tumor stage, disease progression, and overall survival. J Magn Reson Imaging 53(1):305–318

Steiner A, Narva S, Rinta-kiikka I, Hietanen S, Hynninen J, Virtanen J (2021) Diagnostic efficiency of whole-body 18 F- FDG PET / MRI, MRI alone, and SUV and ADC values in staging of primary uterine cervical cancer. Cancer Imaging 21:1–11

Szczepankiewicz F, van Westen D, Englund E, Westin CF, Ståhlberg F, Lätt J et al (2016) The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE). Neuroimage 142:522–532. https://doi.org/10.1016/j.neuroimage.2016.07.038

Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1- weighted MRI of a diffusable tracer: Standardized quantities and symbols. J Magn Reson Imaging 10(3):223–232

Torheim T, Groendahl AR, Andersen EKF, Lyng H, Malinen E, Kvaal K et al (2016) Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients. Acta Oncol (madr) 55(11):1294–1298

Tsien C, Cao Y, Chenevert T (2014) Clinical Applications for Diffusion Magnetic Resonance Imaging in Radiotherapy. Semin Radiat Oncol. 24(3):218–226. https://doi.org/10.1016/j.semradonc.2014.02.004

Watanabe Y, Nakamura S, Ichikawa Y, Ii N, Kawamura T, Kondo E et al (2021) Early alteration in apparent diffusion coefficient and tumor volume in cervical cancer treated with chemoradiotherapy or radiotherapy: Incremental prognostic value over pretreatment assessments. Radiother Oncol 155:3–9. https://doi.org/10.1016/j.radonc.2020.09.059