PET/MRI đa tham số nâng cao đặc trưng khối u ở bệnh nhân ung thư cổ tử cung
Tóm tắt
Từ khóa
#y học cá nhân hóa #ung thư cổ tử cung #PET/MRI đa tham số #tính không đồng nhất khối u #yếu tố hình ảnh chức năngTài liệu tham khảo
Ahangari S, Hansen NL, Olin AB, Nøttrup TJ, Ryssel H, Berthelsen AK et al (2021) Toward PET/MRI as one-stop shop for radiotherapy planning in cervical cancer patients. Acta Oncol (madr). https://doi.org/10.1080/0284186X.2021.1936164
Beaton L, Bandula S, Gaze MN, Sharma RA (2019) How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer 120(8):779–790. https://doi.org/10.1038/s41416-019-0412-y
Caresia-Aróztegui AP, Delgado-Bolton RC, Alvarez-Ruiz S, del Puig Cózar-Santiago M, Orcajo-Rincon J, de Arcocha-Torres M et al (2019) 18F-FDG PET/CT in locally advanced cervical cancer: A review. Rev Española Med Nucl e Imagen Mol 38(1):59–68
Danhier F, Le BA, Préat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9(11):2961–2973
Daniel M, Andrzejewski P, Sturdza A, Majercakova K, Baltzer P, Pinker K et al (2017) Impact of hybrid PET/MR technology on multiparametric imaging and treatment response assessment of cervix cancer. Radiother Oncol 125(3):420–425. https://doi.org/10.1016/j.radonc.2017.10.036
Dappa E, Elger T, Hasenburg A, Düber C, Battista MJ, Hötker AM (2017) The value of advanced MRI techniques in the assessment of cervical cancer: a review. Insights Imaging 8(5):471–481
Davnall F, Yip CSP, Ljungqvist G, Selmi M, Ng F, Sanghera B et al (2012) Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging 3(6):573–589
Divine MR, Katiyar P, Kohlhofer U, Quintanilla-Martinez L, Pichler BJ, Disselhorst JA (2015) A population-based Gaussian mixture model incorporating 18F-FDG PET and diffusion-weighted MRI quantifies tumor tissue classes. J Nucl Med 57(3):473–479
Dröge LH, von Sivers FF, Schirmer MA, Wolff HA (2021) Conventional 3D conformal radiotherapy and volumetric modulated arc therapy for cervical cancer: comparison of clinical results with special consideration of the influence of patient- and treatment-related parameters. Strahlentherapie Und Onkol 197(6):520–527
Durante S, Dunet V, Gorostidi F, Mitsakis P, Schaefer N, Delage J et al (2020) Head and neck tumors angiogenesis imaging with 68Ga-NODAGA-RGD in comparison to 18F-FDG PET/CT: a pilot study. EJNMMI Res 10(1):1–11
Esfahani SA, Torrado-Carvajal A, Amorim BJ, Groshar D, Domachevsky L, Bernstine H et al (2021) PET/MRI and PET/CT radiomics in primary cervical cancer: a pilot study on the correlation of pelvic PET, MRI, and CT derived image features. Mol Imaging Biol 24:60–69
Even AJG, De Ruysscher D, van Elmpt W (2016) The promise of multiparametric imaging in oncology: How do we move forward? Eur J Nucl Med Mol Imaging 43(7):1195–1198. https://doi.org/10.1007/s00259-016-3361-1
Even AJG, Reymen B, La Fontaine MD, Das M, Mottaghy FM, Belderbos JSA et al (2017) Clustering of multi-parametric functional imaging to identify high-risk subvolumes in non-small cell lung cancer. Radiother Oncol 125(3):379–384. https://doi.org/10.1016/j.radonc.2017.09.041
Fields EC, Weiss E (2016) A practical review of magnetic resonance imaging for the evaluation and management of cervical cancer. Radiat Oncol 11(1):1–10. https://doi.org/10.1186/s13014-016-0591-0
Gao S, Du S, Lu Z, Xin J, Gao S, Sun H (2020) Multiparametric PET/MR (PET and MR-IVIM) for the evaluation of early treatment response and prediction of tumor recurrence in patients with locally advanced cervical cancer. Eur Radiol 30(2):1191–1201
Gatenby RA, Grove O, Gillies RJ (2013) Quantitative imaging in cancer evolution and ecology. Radiology 269(1):8–15
Gladwish A, Milosevic M, Fyles A, Xie J, Halankar J, Metser U et al (2016) Association of apparent diffusion coefficient with disease recurrence in patients with locally advanced cervical cancer treated with radical chemotherapy and radiation therapy. Radiology 279(1):158–166
Gong J, Wang NAN, Bian L, Wang MIN, Ye M, Wen NA et al (2019) Cervical cancer evaluated with integrated 18 F-FDG PET/MR. Oncol Lett 18:1815–1823
Han K, Croke J, Foltz W, Metser U, Xie J, Shek T et al (2016) A prospective study of DWI, DCE-MRI and FDG PET imaging for target delineation in brachytherapy for cervical cancer. Radiother Oncol 120(3):519–525. https://doi.org/10.1016/j.radonc.2016.08.002
Harry VN, Persad S, Bassaw B, Parkin D (2021) Diffusion-weighted MRI to detect early response to chemoradiation in cervical cancer: a systematic review and meta-analysis. Gynecol Oncol Rep 38:100883. https://doi.org/10.1016/j.gore.2021.100883
Hylton N (2006) Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol 24(20):3293–3298
Kobayashi R, Yamashita H, Okuma K, Ohtomo K, Nakagawa K (2016) Details of recurrence sites after definitive radiation therapy for cervical cancer. J Gynecol Oncol 27(2):1–13
Lai AYT, Perucho JAU, Xu X, Hui ES, Lee EYP (2017) Concordance of FDG PET/CT metabolic tumour volume versus DW-MRI functional tumour volume with T2-weighted anatomical tumour volume in cervical cancer. BMC Cancer 17(1):1–8
Le BD (2013) Apparent diffusion coefficient and beyond: what diffusion mr imaging can tell us about tissue structure. Radiology 268(2):318–322
Lee EYP, Hui ESK, Chan KKL, Tse KY, Kwong WK, Chang TY et al (2015) Relationship between intravoxel incoherent motion diffusion-weighted MRI and dynamic contrast-enhanced MRI in tissue perfusion of cervical cancers. J Magn Reson Imaging 42(2):454–459
Leibfarth S, Simoncic U, Mönnich D, Welz S, Schmidt H, Schwenzer N et al (2016) Analysis of pairwise correlations in multi-parametric PET/MR data for biological tumor characterization and treatment individualization strategies. Eur J Nucl Med Mol Imaging 43(7):1199–1208
Lim K, Small W, Portelance L, Creutzberg C, Jürgenliemk-Schulz IM, Mundt A et al (2011) Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys 79(2):348–355
Lin AJ, Dehdashti F, Massad LS, Thaker PH, Powell MA, Mutch DG et al (2021) Long-term outcomes of cervical cancer patients treated with definitive chemoradiation following a complete metabolic response. Clin Oncol 33(5):300–306. https://doi.org/10.1016/j.clon.2021.01.010
Litjens GJS, Heisen M, Buurman J, Ter HaarRomeny BM (2010) Pharmacokinetic models in clinical practice: What model to use for DCE-MRI of the breast? In: 2010 7th IEEE international symposium on biomed imaging from nano to macro, ISBI 2010—proceedings 3(3):185–188
Liu S (2009) Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem 20(12):2199–2213
Liu Y, Zhang Y, Cheng R, Liu S, Qu F, Yin X et al (2019) Radiomics analysis of apparent diffusion coefficient in cervical cancer: a preliminary study on histological grade evaluation. J Magn Reson Imaging 49(1):280–290
Lundemann M, Munck af Rosenschöld P, Muhic A, Larsen VA, Poulsen HS, Engelholm SA et al (2019) Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma. Eur J Nucl Med Mol Imaging 46(3):603–613
Mannelli L, Patterson AJ, Zahra M, Priest AN, Graves MJ, Lomas DJ et al (2010) Evaluation of nonenhancing tumor fraction assessed by dynamic contrast-enhanced MRI subtraction as a predictor of decrease in tumor volume in response to chemoradiotherapy in advanced cervical cancer. Am J Roentgenol 195(2):524–527
Mayr NA, Huang Z, Wang JZ, Lo SS, Fan JM, Grecula JC et al (2012) Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: Cervical cancer as a model. Int J Radiat Oncol Biol Phys 83(3):972–979. https://doi.org/10.1016/j.ijrobp.2011.08.011
Metz S, Ganter C, Lorenzen S, Van Marwick S, Herrmann K, Lordick F et al (2010) Phenotyping of tumor biology in patients by multimodality multiparametric imaging: relationship of microcirculation, αvβ3 expression, and glucose metabolism. J Nucl Med 51(11):1691–1698
Metz S, Ganter C, Lorenzen S, Van Marwick S, Holzapfel K, Herrmann K et al (2015) Multiparametric MR and PET imaging of intratumoral biological heterogeneity in patients with metastatic lung cancer using voxel-by-voxel analysis. PLoS ONE 10(7):1–14
O’Connor JPB, Aboagye EO, Adams JE, Aerts HJWL, Barrington SF, Beer AJ et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14(3):169–186
Olin A, Krogager L, Rasmussen JH, Andersen FL, Specht L, Beyer T et al (2018) Preparing data for multiparametric PET/MR imaging: Influence of PET point spread function modelling and EPI distortion correction on the spatial correlation of [18F]FDG-PET and diffusion-weighted MRI in head and neck cancer. Phys Medica. 2019(61):1–7. https://doi.org/10.1016/j.ejmp.2019.04.006
Olsen JR, Esthappan J, Dewees T, Narra VR, Dehdashti F, Siegel BA et al (2013) Tumor volume and subvolume concordance between FDG-PET/CT and diffusion-weighted MRI for squamous cell carcinoma of the cervix. J Magn Reson Imaging 37(2):431–434
Pötter R, Tanderup K, Schmid MP, Jürgenliemk-Schulz I, Haie-Meder C, Fokdal LU et al (2021) MRI-guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE-I): a multicentre prospective cohort study. Lancet Oncol 22(4):538–547
Pötter R, Lindegaard J, Kirisits C, Juergenliemk-schulz I, Leeuw A De, Fortin I, et al. (2015) Image guided intensity modulated External beam radiochemotherapy and MRI based adaptive BRAchytherapy in locally advanced CErvical cancer, EMBRACE-II. :0–132
Rasmussen JH, Nørgaard M, Hansen AE, Vogelius IR, Aznar MC, Johannesen HH et al (2017) Feasibility of multiparametric imaging with PET/MR in head and neck Squamous cell carcinoma. J Nucl Med 58(1):69–74
Schwartz M, Gavane SC, Bou-Ayache J, Kolev V, Zakashansky K, Prasad-Hayes M et al (2018) Feasibility and feasibility and diagnostic performance of hybrid pet/mri compared with pet/ct for gynecological malignancies: a prospective pilot study. Abdom Radiol. 43(12):3462–3467. https://doi.org/10.1007/s00261-018-1665-2
Shih IL, Yen RF, Chen CA, Cheng WF, Chen B, Chang YH et al (2021) PET/MRI in cervical cancer: associations between imaging biomarkers and tumor stage, disease progression, and overall survival. J Magn Reson Imaging 53(1):305–318
Steiner A, Narva S, Rinta-kiikka I, Hietanen S, Hynninen J, Virtanen J (2021) Diagnostic efficiency of whole-body 18 F- FDG PET / MRI, MRI alone, and SUV and ADC values in staging of primary uterine cervical cancer. Cancer Imaging 21:1–11
Szczepankiewicz F, van Westen D, Englund E, Westin CF, Ståhlberg F, Lätt J et al (2016) The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE). Neuroimage 142:522–532. https://doi.org/10.1016/j.neuroimage.2016.07.038
Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1- weighted MRI of a diffusable tracer: Standardized quantities and symbols. J Magn Reson Imaging 10(3):223–232
Torheim T, Groendahl AR, Andersen EKF, Lyng H, Malinen E, Kvaal K et al (2016) Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients. Acta Oncol (madr) 55(11):1294–1298
Tsien C, Cao Y, Chenevert T (2014) Clinical Applications for Diffusion Magnetic Resonance Imaging in Radiotherapy. Semin Radiat Oncol. 24(3):218–226. https://doi.org/10.1016/j.semradonc.2014.02.004
Watanabe Y, Nakamura S, Ichikawa Y, Ii N, Kawamura T, Kondo E et al (2021) Early alteration in apparent diffusion coefficient and tumor volume in cervical cancer treated with chemoradiotherapy or radiotherapy: Incremental prognostic value over pretreatment assessments. Radiother Oncol 155:3–9. https://doi.org/10.1016/j.radonc.2020.09.059