Multi-material braids for multifunctional laminates: conductive through-thickness reinforcement
Tóm tắt
Từ khóa
Tài liệu tham khảo
C. González, J.J. Vilatela, J.M. Molina-Aldareguía, C.S. Lopes, J. LLorca, Structural composites for multifunctional applications: Current challenges and future trends. Prog. Mater. Sci. 89, 194–251 (2017). https://doi.org/10.1016/j.pmatsci.2017.04.005
A.M. Karlsson, M.O. Adeoye, in Encyclopedia of Complexity and Systems Science. Composites, Multifunctional (Springer, New York, 2009), pp. 1283–1302
B. Gu, H. Zhang, B. Wang, S. Zhang, X. Feng, Fracture toughness of laminates reinforced by piezoelectric z-pins. Theor. Appl. Fract. Mech. 77, 35–40 (2015). https://doi.org/10.1016/j.tafmec.2015.01.007
B. Alemour, O. Badran, and M. R. Hassan, “A review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation,” J. Aerosp. Technol. Manag., 2019, doi: https://doi.org/10.5028/jatm.v11.1022
M. Gagné, D. Therriault, Lightning strike protection of composites. Prog. Aerosp. Sci. 64, 1–16 (2014). https://doi.org/10.1016/j.paerosci.2013.07.002
M.G. Callens, L. Gorbatikh, I. Verpoest, Ductile steel fibre composites with brittle and ductile matrices. Compos. Part A 61, 235–244 (2014). https://doi.org/10.1016/j.compositesa.2014.02.006
U.P. Breuer, S. Schmeer, in Multifunctionality of Polymer Composites: Challenges and New Solutions, ed. by K. Friedrich, U. Breuer. Carbon and metal-fiber-reinforced airframe structures (Elsevier Inc., New York, 2015), pp. 435–447
H. Kawakami, P. Feraboli, Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites. Compos. Part A Appl. Sci. Manuf. 42(9), 1247–1262 (2011). https://doi.org/10.1016/j.compositesa.2011.05.007
C. O’Brien, A.E. Zaghi, Mechanical characteristics of hybrid composites with ± 45° glass and 0° /90° stainless steel fibers. Materials (Basel) 11, 1355–1372 (2018). https://doi.org/10.3390/ma11081355
A.K. Mcbride, S.L. Turek, A.E. Zaghi, K.A. Burke, Mechanical behavior of hybrid glass / steel fiber reinforced epoxy composites. Polymers (Basel) 9, 1–16 (2017). https://doi.org/10.3390/polym9040151
K. Friedrich, in Multifunctionality of Polymer Composites: Challenges and New Solutions, no. 1, ed. by K. Friedrich, U. Breuer. Routes for achieving multifunctionality in reinforced polymers and composite structures (Elsevier Inc., New York, 2015), pp. 3–41
N.D. Alexopoulos, C. Bartholome, P. Poulin, Z. Marioli-Riga, Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers. Compos. Sci. Technol. 70(2), 260–271 (2010). https://doi.org/10.1016/j.compscitech.2009.10.017
L. Nicolais, G. Carotenuto, Nanocomposites with tailored optical properties. Editor(s): Klaus Friedrich, Ulf Breuer, Multifunctionality of Polymer Composites, Elsevier, Oxford, UK, 28, 842-857, (2015) https://doi.org/10.1016/B978-0-323-26434-1.00028-3.
L. Christodoulou, J.D. Venables, Multifunctional material systems: The first generation. J. Miner. Met. Mater. Soc. 55(12), 39–45 (2003). https://doi.org/10.1007/s11837-003-0008-z
R.F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 92(12), 2793–2810 (2010). https://doi.org/10.1016/j.compstruct.2010.05.003
K. Salonitis, J. Pandremenos, J. Paralikas, G. Chryssolouris, Multifunctional materials: Engineering applications and processing challenges. Int. J. Adv. Manuf. Technol. 49(5–8), 803–826 (2010). https://doi.org/10.1007/s00170-009-2428-6
A.D.B.L. Ferreira, P.R.O. Nóvoa, A.T. Marques, Multifunctional material systems: A state-of-the-art review. Compos. Struct. 151, 3–35 (2016). https://doi.org/10.1016/j.compstruct.2016.01.028
K.K. Sairajan, G.S. Aglietti, K.M. Mani, A review of multifunctional structure technology for aerospace applications. Acta Astronaut. 120, 30–42 (2016). https://doi.org/10.1016/j.actaastro.2015.11.024
K.J. Narayana, R. Gupta Burela, A review of recent research on multifunctional composite materials and structures with their applications. Mater. Today Proc. 5(2), 5580–5590 (2018). https://doi.org/10.1016/j.matpr.2017.12.149
C. Osmiani, G. Mohamed, J.W.G. Treiber, G. Allegri, I.K. Partridge, Exploring the influence of micro-structure on the mechanical properties and crack bridging mechanisms of fibrous tufts. Compos. Part A Appl. Sci. Manuf. 91, 409–419 (2016). https://doi.org/10.1016/j.compositesa.2016.08.008
D. M. Lombetti, “Tufting of complex composite structures,” PhD Thesis, Cranfield Univeristy 2015
I. Gnaba, X. Legrand, P. Wang, D. Soulat, Literature review of tufted reinforcement for composite structures. IOP Conf. Ser. Mater. Sci. Eng. 254(4), 042011 (2017). https://doi.org/10.1088/1757-899X/254/4/042011
I. Gnaba, P. Wang, X. Legrand, D. Soulat, Manufacturing and characterization of tufted preform with complex shape. Adv. Aircr. Spacecr. Sci. 6(2), 105–116 (2019). https://doi.org/10.12989/aas.2019.6.2.105
D.M. Lombetti, A.A. Skordos, Lightning strike and delamination performance of metal tufted carbon composites. Compos. Struct. 209, 694–699 (2019). https://doi.org/10.1016/j.compstruct.2018.11.005
M. Scott, G. Dell’Anno, H. Clegg, Effect of process parameters on the geometry of composite parts reinforced by through-the-thickness tufting. Appl. Compos. Mater., 1–12 (2018). https://doi.org/10.1007/s10443-018-9710-4
G. Dell’Anno, “Effect of tufting on the mechanical behaviour of carbon fabric/epoxy composites,” PhD Thesis, Cranfield University 2007
J. W. G. Treiber, “Performance of tufted carbon fibre/epoxy composites,” PhD Thesis, Cranfield University, 2011
C. Hui, P. Wang, X. Legrand, Improvement of tufting mechanism during the advanced 3-dimensional tufted composites manufacturing: To the optimisation of tufting threads degradation. Compos. Struct. 220, 423–430 (Jul. 2019). https://doi.org/10.1016/j.compstruct.2019.04.019
A.T. Martins, Z. Aboura, W. Harizi, A. Laksimi, K. Hamdi, Structural health monitoring by the piezoresistive response of tufted reinforcements in sandwich composite panels. Compos. Struct. 210(July 2018), 109–117 (2019). https://doi.org/10.1016/j.compstruct.2018.11.032
A.T.T. Martins, Z. Aboura, W. Harizi, A. Laksimi, K. Khellil, Structural health monitoring for GFRP composite by the piezoresistive response in the tufted reinforcements. Compos. Struct. 209, 103–111 (2019). https://doi.org/10.1016/j.compstruct.2018.10.091
E. Chehura, G. Dell’Anno, T. Huet, S. Staines, S.W. James, I.K. Partridge, R.P. Tatam, On-line monitoring of multi-component strain development in a tufting needle using optical fibre Bragg grating sensors. Smart Mater. Struct. 23, 1–9 (2014). https://doi.org/10.1088/0964-1726/23/7/075001
G. Dell’Anno, J.W.G. Treiber, I.K. Partridge, Manufacturing of composite parts reinforced through-thickness by tufting. Robot. Comput. Integr. Manuf. 37, 262–272 (2016). https://doi.org/10.1016/j.rcim.2015.04.004
C. O’Keeffe, G. Allegri, I.K. Partridge, in SMS 2018 Smart Materials and Surfaces, Venice. Hybrid Multimaterial Microbraids for Through-Thickness Multifunctionality (2018)
C. O’Keeffe, G. Allegri, I.K. Partridge, in 1st European Conference on Crashworthiness of Composite Structures – ECCCS-1, Belfast. Hybrid multi-matrials microbraids for through-thickness multi-functionality (2019)
J.P. Carey, Handbook of advances in braided composite materials: theory, production, testing and applications Duxford: Elsevier Science (2016)
D.S. Ivanov, F. Baudry, B. Van Den Broucke, S.V. Lomov, H. Xie, I. Verpoest, Failure analysis of triaxial braided composite. Compos. Sci. Technol. 69(9) (2009). https://doi.org/10.1016/j.compscitech.2008.09.013
A.K. Pickett, J. Sirtautas, A. Erber, Braiding simulation and prediction of mechanical properties. Appl. Compos. Mater. 16(6), 345–364 (2009). https://doi.org/10.1007/s10443-009-9102-x
I. Verpoest, S.V. Lomov, Virtual textile composites software WiseTex: Integration with micro-mechanical , permeability and structural analysis. Compos. Sci. Technol. 65, 2563–2574 (2005). https://doi.org/10.1016/j.compscitech.2005.05.031
S.V. Lomov, I. Verpoest, J. Cichosz, C. Hahn, D.S. Ivanov, B. Verleye, Meso-level textile composites simulations: Open data exchange and scripting. J. Compos. Mater. 48(5), 621–637 (2014). https://doi.org/10.1177/0021998313476327
British Standards Institution, “BS EN ISO 2062:2009. Textiles — Yarns from packages — Determination of single-end breaking force and elongation at break using constant rate of extension.” 2009
British Standards Institution, “BS 7658–2: 1993, ISO 10120:1991. Carbon fibre — Part 2: Method for determination of linear density,” 1993
S.C. Brown, C. Robert, V. Koutsos, D. Ray, Methods of modifying through-thickness electrical conductivity of CFRP for use in structural health monitoring, and its effect on mechanical properties. Compos. Part A 133(March), 105885 (2020). https://doi.org/10.1016/j.compositesa.2020.105885
T. Bayerl, M. Duhovic, P. Mitschang, D. Bhattacharyya, The heating of polymer composites by electromagnetic induction - a review. Compos. Part A Appl. Sci. Manuf. 57(2014), 27–40 (2014). https://doi.org/10.1016/j.compositesa.2013.10.024
S.V. Lomov, D.S. Ivanov, I. Verpoest, M. Zako, T. Kurashiki, H. Nakai, S. Hirosawa, Meso-FE modelling of textile composites: Road map, data flow and algorithms. Compos. Sci. Technol. 67(9), 1870–1891 (2007). https://doi.org/10.1016/j.compscitech.2006.10.017
R. Rudolf, P. Mitschang, M. Neitzel, Induction heating of continuous carbon-fibre-reinforced thermoplastics. Compos. Part A Appl. Sci. Manuf. 31(11), 1191–1202 (2000). https://doi.org/10.1016/S1359-835X(00)00094-4