Multi-body dynamics simulation of geometrically exact Cosserat rods
Tóm tắt
Từ khóa
Tài liệu tham khảo
Antman, S.S.: Dynamical problems for geometrically exact theories of nonlinearly viscoelastic rods. J. Nonlinear Sci. 6, 1–18 (1996)
Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin (2005)
Arnold, M.: Numerical methods for simulation in applied mechanics. In: Arnold, M., Schiehlen, W. (eds.) Simulation Techniques for Applied Mechanics, pp. 191–246. Springer, Berlin (2008)
Bauchau, O.A., Epple, A., Bottasso, C.L.: Scaling of constraints and augmented Lagrangian formulations in multibody dynamics simulations. J. Comput. Nonlinear Dyn. 4(2), 021007 (2009)
Bauchau, O.A., Trainelli, L.: The vectorial parametrization of rotation. Nonlinear Dyn. 32(1), 71–92 (2003)
Bauchau, O.A., Epple, A., Heo, S.: Interpolation of finite rotations in flexible multi-body dynamics simulations. Proc. IME Multi-body Dyn. 222(4), 353–366 (2008)
Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27(3), 63:1–63:12 (2008)
Betsch, P., Siebert, R.: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration. Int. J. Numer. Methods Eng. 79(4), 444–473 (2009)
Betsch, P., Steinmann, P.: A DAE approach to flexible multibody dynamics. Multibody Syst. Dyn. 8, 365–389 (2002)
Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1755–1788 (2002)
Bobenko, A.I., Suris, Y.B.: Discrete time Lagrangian mechanics on Lie groups with an application to the Lagrange top. Commun. Math. Phys. 204, 147–188 (1999)
Cardona, A., Géradin, M.: A beam finite element nonlinear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2434 (1998)
Cardona, A., Géradin, M.: Flexible Multibody Dynamics. A Finite Element Approach. Wiley, New York (2001)
Cartan, H.: Differential Forms. Kershaw, Kershaw (1971), reprinted by Dover, 2006
Chouaieb, N., Maddocks, J.H.: Kirchhoff’s problem of helical equilibria of uniform rods. J. Elast. 77, 221–247 (2004)
Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 68(1), 87–92 (1968)
Craig, R.R. Jr., Kurdila, A.J.: Fundamentals of Structural Dynamics. Wiley, New York (2006)
Craig, R.R. Jr., Bampton, M.C.C.: Coupling of substructures for dynamic analysis. AIAA J. 6(7) (1968)
Crisfield, M.A., Jelenic, G.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite element implementation. Proc. R. Soc. Lond. 455, 1125–1147 (1999)
Dichmann, D.J., Maddocks, J.H.: An impetus-striction simulation of the dynamics of an elastica. J. Nonlinear Sci. 6, 271–292 (1996)
Ebbinghaus, H.D., et al.: Numbers. Springer, Berlin (1992)
Hanson, A.J.: Visualizing Quaternions. Elsevier, Amsterdam (2005)
Hairer, E., Lubich, C., Roche, M.: The numerical solutions of differential-algebraic systems by Runge-Kutta methods. In: Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989)
Hairer, E., Noersett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Berlin (1993)
Ibrahimbegović, A.: On finite element implementations of geometrically nonlinear Reissner’s beam theory: three dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 112, 11–26 (1995)
Ibrahimbegović, A., Frey, F.: Finite element analysis of linear and nonlinear planar deformations of elastic initially curved beams. Int. J. Numer. Methods Eng. 36, 3239–3258 (1992)
Jung, P., Leyendecker, S., Linn, J., Ortiz, M.: A discrete mechanics approach to Cosserat rod theory—Part I: Static equilibria. Int. J. Numer. Methods Eng. (2010). doi: 10.1002/nme.2950 . Preprint: Berichte des ITWM Nr. 183 (2010)
Kehrbaum, S., Maddocks, J.H.: Elastic rods, rigid bodies, quaternions and the last quadrature. Philos. Trans. R. Soc. Lond. A 355, 2117–2136 (1997)
Kirchhoff, G.: Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. (Crelle) 56, 285–343 (1859)
Langer, J., Singer, D.A.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38(4), 605–618 (1996)
Lang, H., Arnold, M.: Numerical aspects in the dynamic simulation of geometrically exact rods. Appl. Numer. Math. (accepted) Preprint: Ber. ITWM Kaiserslautern, 179 (2009)
Lang, H., Linn, J.: Lagrangian field theory in space-time for geometrically exact Cosserat rods. Preprint: Ber. ITWM Kaiserslautern, 150 (2009)
Linn, J., Stephan, T., Carlsson, J., Bohlin, R.: Fast simulation of quasistatic cable deformations for Virtual Reality applications. In: Bonilla, L.L., et al. (eds.) Progress in Industrial Mathematics at ECMI 2006, pp. 247–253. Springer, Berlin (2007). Preprint: Ber. ITWM Kaiserslautern, 143
Linn, J., Stephan, T.: Simulation of quasistatic deformations using discrete rod models. In: Bottasso, C.L., Masarati, P., Trainelli, L. (eds.) Multibody Dynamics 2007, ECCOMAS Thematic Conference. Milano, Italy, 25–28 June 2007. Preprint: Ber. ITWM Kaiserslautern, 144
Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927), reprinted by Dover, 1944
Lubich, C.: Integration of stiff mechanical systems by Runge-Kutta methods. J. Appl. Math. Phys. 44, 1022–1053 (1993)
Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: general modeling framework. SIAM J. Appl. Math. 66(5), 1703–1726 (2006)
Matthies, H., Strang, G.: The solution of nonlinear finite element equations. Int. J. Numer. Methods Eng. 14, 1613–1626 (1967)
Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial Value Problems. Interscience Publishers, New York (1967)
Nizette, M., Goriely, A.: Towards a classification of Euler–Kirchhoff filaments. J. Math. Phys. 40(6), 2830–2866 (1999)
Petzold, L.R.: A description of DASSL: a differential algebraic system solver. In: Stepleman, R.S. (ed.) Scientific Computing. North-Holland, Amsterdam (1981)
Rabier, P.J., Rheinboldt, W.C.: Non-Holonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint. SIAM, Philadelphia (2000)
Reissner, E.: On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52, 87–95 (1973)
Romero, I.: The interpolation of rotations and its application to finite-element models of geometrically exact rods. Comput. Mech. 34, 121–133 (2004)
Sander, O.: Geodesic finite elements for Cosserat rods. Int. J. Numer. Methods Eng. 82(13), 1645–1670 (2009)
Schiehlen, W.O.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1, 149–188 (1997)
Schiehlen, W., Eberhard, P.: Technische Dynamik. Modelle für Regelung und Simulation. Teubner, Leipzig (2004)
Schwab, A.L., Meijaard, P.J.: How to draw Euler angles and utilize Euler parameters. In: Proceedings of IDETC/CIE (2008)
Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997)
Shoemake, K.: Animating rotation with quaternion curves. ACM SIGGRAPH Comput. Graph. 19(3), 245–254 (1985)
Simeon, B.: Numerical analysis of flexible multibody dynamics. Multibody Syst. Dyn. 6, 305–325 (2001)
Simo, J.C.: A finite strain beam formulation. The three dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)
Simo, J.C., Vu-Quoc, L.: A three dimensional finite strain rod model. Part II. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)
Spillmann, J., Teschner, M.: CoRdE. Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In: Eurographics/ACM SIGGRAPH, pp. 1–10 (2007)