Multi-Objective Cognitive Model: a Supervised Approach for Multi-subject fMRI Analysis

Springer Science and Business Media LLC - Tập 17 - Trang 197-210 - 2018
Muhammad Yousefnezhad1, Daoqiang Zhang1
1College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Tóm tắt

In order to decode human brain, Multivariate Pattern (MVP) classification generates cognitive models by using functional Magnetic Resonance Imaging (fMRI) datasets. As a standard pipeline in the MVP analysis, brain patterns in multi-subject fMRI dataset must be mapped to a shared space and then a classification model is generated by employing the mapped patterns. However, the MVP models may not provide stable performance on a new fMRI dataset because the standard pipeline uses disjoint steps for generating these models. Indeed, each step in the pipeline includes an objective function with independent optimization approach, where the best solution of each step may not be optimum for the next steps. For tackling the mentioned issue, this paper introduces Multi-Objective Cognitive Model (MOCM) that utilizes an integrated objective function for MVP analysis rather than just using those disjoint steps. For solving the integrated problem, we proposed a customized multi-objective optimization approach, where all possible solutions are firstly generated, and then our method ranks and selects the robust solutions as the final results. Empirical studies confirm that the proposed method can generate superior performance in comparison with other techniques.

Tài liệu tham khảo

Bennett, C.M., Baird, A., Miller, M.B., Wolfrod, G.L. (2009). Neural correlates of interspieces perspective taking in the post-mortem atlantic salmon: an argument for multiple comparisons correction. Human Brain Mapping, 1, 1995. Bradley, P.S., & Mangasarian, O.L. (1998). Feature selection via concave minimization and support vector machines. In 15th international conference on machine learning (ICML) (Vol. 98, pp. 82–90). Association for computing machinery (ACM). Madison, Wisconsin, USA. Cai, M.B., Schuck, N.W., Pillow, J.W., Niv, Y. (2016). A bayesian method for reducing bias in neural representational similarity analysis. In Advances in neural information processing systems (NIPS) (pp. 4951–4959). Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Rao, A.R. (2009). Prediction and interpretation of distributed neural activity with sparse models. NeuroImage, 44(1), 112–122. Chen, P.H., Chen, J., Yeshurun, Y., Hasson, U., Haxby, J., Ramadge, P.J. (2015). A reduced-dimension fmri shared response model. In 28th advances in neural information processing systems (NIPS-15) (pp. 460–468). Advances in neural information processing systems (NIPS). Montréal, Canada. Chen, P.H., Guntupalli, J.S., Haxby, J.V., Ramadge, P.J. (2014). Joint svd-hyperalignment for multi-subject fmri data alignment. In 24th international workshop on machine learning for signal processing (MLSP) (pp. 1–6). Reims, France: IEEE. Chen, P.H., Zhu, X., Zhang, H., Turek, J.S., Chen, J., Willke, T.L., Hasson, U., Ramadge, P.J. (2016). A convolutional autoencoder for multi-subject fmri data aggregation. In 29th workshop of representation learning in artificial and biological neural networks. Advances in neural information processing systems (NIPS). Barcelona, Spain. Conroy, B.R., Walz, J.M., Sajda, P. (2013). Fast bootstrapping and permutation testing for assessing reproducibility and interpretability of multivariate fmri decoding models. PLoS ONE, 8(11), 1–11. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. Cox, D.D., & Savoy, R.L. (2003). Functional magnetic resonance imaging (fmri) “brain reading”: detecting and classifying distributed patterns of fmri activity in human visual cortex. NeuroImage, 19(2), 261–270. Cox, R.W. (1996). Afni: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical research, 29(3), 162–173. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. Duncan, K.J., Pattamadilok, C., Knierim, I., Devlin, J.T. (2009). Consistency and variability in functional localisers. NeuroImage, 46(4), 1018–1026. Eklund, A., Nichols, T.E., Knutsson, H. (2016). Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences (PNAS), 113(28), 7900–7905. Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., Taylor, J.E. (2013). Interpretable whole-brain prediction analysis with graphnet. NeuroImage, 72, 304–321. Güçlü, U., & van Gerven, M.A. (2015). Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. Journal of Neuroscience, 35(27), 10,005–10,014. Guntupalli, J.S., Hanke, M., Halchenko, Y.O., Connolly, A.C., Ramadge, P.J., Haxby, J.V. (2016). A model of representational spaces in human cortex. Cerebral Cortex, 26(6), 2919–2934. Hanke, M., Baumgartner, F.J., Ibe, P., Kaule, F.R., Pollmann, S., Speck, O., Zinke, W., Stadler, J. (2014). A high-resolution 7-tesla fmri dataset from complex natural stimulation with an audio movie. Scientific Data, 1, 1–8. Haxby, J.V., Connolly, A.C., Guntupalli, J.S. (2014). Decoding neural representational spaces using multivariate pattern analysis. Annual Review of Neuroscience, 37, 435–456. Haxby, J.V., Guntupalli, J.S., Connolly, A.C., Halchenko, Y.O., Conroy, B.R., Gobbini, M.I., Hanke, M., Ramadge, P.J. (2011). A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron, 72(2), 404–416. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M. (2012). Fsl. Neuroimage, 62(2), 782–790. Kao, M.H. (2009). Multi-objective optimal experimental designs for er-fmri using matlab. Journal of Statistical Software, 30 (11), 1–13. Kao, M.H., Mandal, A., Stufken, J. (2012). Constrained multiobjective designs for functional magnetic resonance imaging experiments via a modified non-dominated sorting genetic algorithm. Journal of the Royal Statistical Society. Series C: Applied Statistics, 61(4), 515–534. Li, B., Tang, K., Li, J., Yao, X. (2016). Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Transactions on Evolutionary Computation, 20(6), 924– 938. Li, M., Yang, S., Liu, X. (2014). Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Transactions on Evolutionary Computation, 18(3), 348–365. Lorbert, A., & Ramadge, P.J. (2012). Kernel hyperalignment. In 25th advances in neural information processing systems (NIPS-12). Advances in neural Information Processing Systems (NIPS) (pp. 1790–1798). Harveys, Lake Tahoe. Ma, X., Chou, C.A., Sayama, H., Chaovalitwongse, WA. (2016). Brain response pattern identification of fMRI data using a particle swarm optimization-based approach. Brain Informatics, 3(3), 181–192. Mitchell, T.M., Shinkareva, S.V., Carlson, A., Chang, K.M., Malave, V.L., Mason, R.A., Just, M.A. (2008). Predicting human brain activity associated with the meanings of nouns. Science, 320(5880), 1191–1195. Mohr, H., Wolfensteller, U., Frimmel, S., Ruge, H. (2015). Sparse regularization techniques provide novel insights into outcome integration processes. NeuroImage, 104, 163–176. Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fmri data. Trends in Cognitive Sciences, 10(9), 424–430. Osher, D.E., Saxe, R.R., Koldewyn, K., Gabrieli, J.D., Kanwisher, N., Saygin, Z.M. (2015). Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cerebral Cortex, 26(4), 1668–1683. Pauli, R., Bowring, A., Reynolds, R., Chen, G., Nichols, T.E., Maumet, C. (2016). Exploring fmri results space: 31 variants of an fmri analysis in afni, fsl, and spm. Frontiers in Neuroinformatics, 10, 1–6. Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E. (2011). Statistical parametric mapping: the analysis of functional brain images. Academic Press. ISBN: 978-0-12-372560-8. Rademacher, J., Caviness, V.S., Steinmetz, H., Galaburda, A. (1993). Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cerebral Cortex, 3(4), 313–329. Tom, S.M., Fox, C.R., Trepel, C., Poldrack, R.A. (2007). The neural basis of loss aversion in decision-making under risk. Science, 315(5811), 515–518. Wakeman, D.G., & Henson, R.N. (2015). A multi-subject, multi-modal human neuroimaging dataset. Scientific Data, 2, 1–10. Walz, J.M., Goldman, R.I., Carapezza, M., Muraskin, J., Brown, T.R., Sajda, P. (2013). Simultaneous eeg-fmri reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem. Journal of Neuroscience, 33(49), 19,212–19,222. Watson, J.D., Myers, R., Frackowiak, R.S.J., Hajnal, J.V., Woods, R.P., Mazziotta, J.C., Shipp, S., Zeki, S. (1993). Area v5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cerebral Cortex, 3(2), 79–94. Xu, H., Lorbert, A., Ramadge, P.J., Guntupalli, J.S., Haxby, J.V. (2012). Regularized hyperalignment of multi-set fmri data. In Statistical signal processing workshop (SSP) (pp. 229–232). Ann Arbor, USA: IEEE. Yousefnezhad, M., & Zhang, D. (2016). Decoding visual stimuli in human brain by using anatomical pattern analysis on fmri images. In 8th international conference on brain inspired cognitive systems (BICS’16) (pp. 47–57). Beijing: Springer. Yousefnezhad, M., & Zhang, D. (2017). Local discriminant hyperalignment for multi-subject fmri data alignment. In 34th AAAI conference on artificial intelligence (AAAI-17). Association for the advancement of artificial intelligence (AAAI). San Francisco, California, USA. Yousefnezhad, M., & Zhang, D. (2017). Multi-region neural representation: a novel model for decoding visual stimuli in human brains. In 17th SIAM international conference on data mininig (SDM-17). Society for industrial and applied mathematics (SIAM). Houston, Texas, USA. Zitzler, E., & Künzli, S. (2004). Indicator-based selection in multiobjective search. In International conference on parallel problem solving from nature (pp. 832–842). Birmingham: Springer. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.