Motorized Biomechatronic Upper and Lower Limb Prostheses—Clinically Relevant Outcomes

Wiley - Tập 10 Số 9S2 - 2018
Knut Knut, Bertrand Bertrand, Lynsay Lynsay, David David, Roy Roy, Kristleifur Kristleifur

Tóm tắt

AbstractPeople with major limb amputations are severely impaired when it comes to activity, body structure and function, as well as participation. Demographic statistics predict a dramatic increase of this population and additional challenges with their increasing age and higher levels of amputation. Prosthetic use has been shown to have a positive impact on mobility and depression, thereby affecting the quality of life. Biomechatronic prostheses are at the forefront of prosthetic development. Actively powered designs are now regularly used for upper limb prosthetic fittings, whereas for lower limbs the clinical use of actively powered prostheses has been limited to a very low number of applications. Actively powered prostheses enhance restoration of the lost physical functions of an amputee but are yet to allow intuitive user control. This paper provides a review of the status of biomechatronic developments in upper and lower limb prostheses in the context of the various challenges of amputation and the clinically relevant outcomes. Whereas most of the evidence regarding lower limb prostheses addresses biomechanical issues, the evidence for upper limb prostheses relates to activities of daily living (ADL) and instrumental ADL through diverse outcome measures and tools.

Tài liệu tham khảo

10.1177/1071100713475357 10.1016/j.apmr.2007.11.005 WHO, 2001, International Classification of Functioning, Disability and Health: ICF Cocchiarella L., 2001, Guides to the Evaluation of Permanent Impairment 10.7547/87507315-91-1-13 10.3109/17483107.2011.635405 10.1007/s11999-014-3647-1 10.1682/JRRD.2014.09.0210 Pickle N.T., 2017, Segmental contributions to sagittal‐plane whole‐body angular momentum when using powered compared to passive ankle‐foot prostheses on ramps, IEEE Int Conf Rehabil Robot Proc, 2017, 1609 10.1177/0309364616650085 Au S.K., 2007, Powered ankle‐foot prosthesis for the improvement of amputee ambulation, Conf Proc IEEE Eng Med Biol Soc, 2007, 3020 Mancinelli C., 2011, Comparing a passive‐elastic and a powered prosthesis in transtibial amputees, Conf Proc IEEE Eng Med Biol Soc, 2011, 8255 10.1098/rspb.2011.1194 Gates D.H., 2013, Kinematic comparison of walking on uneven ground using powered and unpowered prostheses, Clin Biomech. Bristol Avon, 28, 467, 10.1016/j.clinbiomech.2013.03.005 Esposito E.R., 2016, Step‐to‐step transition work during level and inclined walking using passive and powered ankle–foot prostheses, Prosthet Orthot Int, 40, 311, 10.1177/0309364614564021 Grimmer M., 2017, Feasibility study of transtibial amputee walking using a powered prosthetic foot, IEEE Int Conf Rehabil Robot Proc, 2017, 1118 Ferris A.E., 2012, Evaluation of a powered ankle‐foot prosthetic system during walking, Arch Phys Med Rehabil, 93, 1911, 10.1016/j.apmr.2012.06.009 10.1186/1743-0003-10-49 Hill D., 2013, Effects of a powered ankle‐foot prosthesis on kinetic loading of the contralateral limb: A case series, IEEE Int Conf Rehabil Robot Proc, 2013, 6650375 Esposito E.R., 2014, Biomechanical risk factors for knee osteoarthritis when using passive and powered ankle–foot prostheses, Clin Biomech, 29, 1186, 10.1016/j.clinbiomech.2014.09.005 10.1097/JPO.0000000000000029 Brandt A., 2016, Does the impedance of above‐knee powered prostheses need to be adjusted for load‐carrying conditions?, Conf Proc IEEE Eng Med Biol Soc, 2016, 5075 Creylman V., 2016, Assessment of transfemoral amputees using a passive microprocessor‐controlled knee versus an active powered microprocessor‐controlled knee for level walking, Biomed Eng Online, 15, 142, 10.1186/s12938-016-0287-6 10.1371/journal.pone.0147661 Pasquina P.F., 2017, Case series of wounded warriors receiving initial fit PowerKneeTM prosthesis, JPO J Prosthet Orthot, 29, 88, 10.1097/JPO.0000000000000123 10.1016/j.gaitpost.2009.06.009 Wolf S.I., 2009, Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot, Clin Biomech (Bristol, Avon), 24, 860, 10.1016/j.clinbiomech.2009.08.007 10.1016/j.gaitpost.2010.04.011 10.1682/JRRD.2012.05.0093 10.1016/j.jbiomech.2014.08.001 10.1016/j.gaitpost.2015.05.011 Pickle N.T., 2016, Whole‐body angular momentum during sloped walking using passive and powered lower‐limb prostheses, J Biomech, 49, 3397, 10.1016/j.jbiomech.2016.09.010 10.1109/TNSRE.2015.2428196 Pickle N.T., 2017, The functional roles of muscles, passive prostheses, and powered prostheses during sloped walking in people with a transtibial amputation, J Biomech Eng, 139, 10.1115/1.4037938 Burger H., 2016, A survey of overuse problems in patients with acquired or congenital upper limb deficiency, Prosthet Orthot Int, 40, 497, 10.1177/0309364615584658 10.1191/0269215504cr716oa A.Wanamaker L.Whelan J.Farley A.Chaudhari.Comparison of functionality and compensation with and without powered partial hand multiarticulating prostheses. InMEC 2017 Conference Proceedings Fredericton New Brunswick Canada 2017 p. ID #108. Vilarino M., 2015, Outcomes and perception of a conventional and alternative myoelectric control strategy: A study of experienced and new multiarticulating hand users, JPO J Prosthet Orthot, 27, 53, 10.1097/JPO.0000000000000055 C.Baschuk P.Hoeun L.Katzenberger D.Latour T.Passero E.Tompkins.Utilization of pattern recognition with patients initially contraindicated for myoelectric control in upper limb prostheses. In:First World Congress on Innovations in Amputation Surgery and Prosthetic Technologies Conference Proceedings;2016; Chicago Illinois. Kuiken T.A., 2016, A comparison of pattern recognition control and direct control of a multiple degree‐of‐freedom transradial prosthesis, IEEE J Transl Eng Health Med, 4, 1, 10.1109/JTEHM.2016.2616123 Wurth S.M., 2014, A real‐time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts' law style assessment procedure, J Neuroeng Rehabil, 11, 91, 10.1186/1743-0003-11-91 10.1016/j.apmr.2008.05.016 10.1016/S0140-6736(07)60193-7 10.1038/s41598-017-14386-w 10.1055/s-0035-1544166 10.1001/jama.2009.116 10.1016/j.jneumeth.2014.07.016 10.1088/1741-2560/13/1/016001 10.1126/scitranslmed.3006820 Thakor N.V., 2014, Catching brain waves in a net, IEEE Spectr, 51, 40, 10.1109/MSPEC.2014.6882987 10.1038/nature04970 10.1590/S1679-45082014AO3132 10.1016/j.jphys.2014.09.003 10.1177/0309364614542725 10.1016/j.jvs.2011.01.046 10.1053/apmr.2001.24295 Geurts A.C., 1992, Postural reorganization following lower limb amputation. Possible motor and sensory determinants of recovery, Scand J Rehabil Med, 24, 83, 10.2340/1650197792248390 10.1016/j.gaitpost.2009.02.009 10.1016/j.apmr.2008.08.220 10.1080/03093640500199612 10.1016/j.gaitpost.2006.12.007 Vrieling A.H., 2008, Uphill and downhill walking in unilateral lower limb amputees, Gait Posture, 28, 235, 10.1016/j.gaitpost.2007.12.006 10.3109/03093640903074891 10.1109/TNSRE.2008.920075 Kristjansson K., 2017, Converging Clinical and Engineering Research on Neurorehabilitation II, 571, 10.1007/978-3-319-46669-9_94 10.1186/1743-0003-12-1 Zhang F., 2012, Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 2768, 10.1109/EMBC.2012.6346538 Spanias J.A., 2018, Online adaptive neural control of a robotic lower limb prosthesis, J Neural Eng, 15, 016015, 10.1088/1741-2552/aa92a8 10.1097/PHM.0000000000000265 Shirota C., 2014, Recovery strategy identification throughout swing phase using kinematic data from the tripped leg, Conf Proc IEEE Eng Med Biol Soc, 2014, 6199 10.1016/j.gaitpost.2012.12.013 10.1016/j.apmr.2009.12.014 10.1002/pri.260 10.1016/j.gaitpost.2007.12.002 Nederhand M.J., 2012, Dynamic Balance Control (DBC) in lower leg amputee subjects; Contribution of the regulatory activity of the prosthesis side, Clin Biomech, 27, 40, 10.1016/j.clinbiomech.2011.07.008 G.Gini U.Scarfogliero M.Folgheraiter.Human‐oriented biped robot design: Insights into the development of a truly anthropomorphic leg. In:IEEE International Conference on Robotics and Automation 2007:2910–2915. 10.1682/JRRD.2014.01.0031 H.F.Ossur.Power Knee Technical Manual.www.ossur.com. Published 2017. 10.1016/j.apmr.2013.07.020 Highsmith M.J., 2010, Differences in the spatiotemporal parameters of transtibial and transfemoral amputee gait, JPO J Prosthet Orthot, 22, 26, 10.1097/JPO.0b013e3181cc0e34 10.1098/rspb.2001.1761 10.1016/j.jbiomech.2013.12.011 Kim M., 2015, Once‐per‐step control of ankle‐foot prosthesis push‐off work reduces effort associated with balance during walking, J Neuroeng Rehabil, 12, 43, 10.1186/s12984-015-0027-3 10.1080/00140130802567079 10.1371/journal.pone.0100125 Wanamaker A.B., 2017, When to biomechanically examine a lower‐limb amputee: A systematic review of accommodation times, Prosthet Orthot Int, 41, 431, 10.1177/0309364616682385 10.1007/s00421-008-0764-0 Hofstad C., 2004, Prescription of prosthetic ankle‐foot mechanisms after lower limb amputation, Cochrane Database Syst Rev, CD003978 Jarvis H.L., 2017, Temporal spatial and metabolic measures of walking in highly functional individuals with lower limb amputations, Arch Phys Med Rehabil, 98, 1389, 10.1016/j.apmr.2016.09.134 Esposito E.R., 2014, Does unilateral transtibial amputation lead to greater metabolic demand during walking?, J Rehabil Res Dev, 51, 1287, 10.1682/JRRD.2014.06.0141 10.1177/0309364617708649 10.1249/mss.0b013e31802b3562 10.1016/j.gaitpost.2006.07.002 Caputo J.M., 2014, Prosthetic ankle push‐off work reduces metabolic rate but not collision work in non‐amputee walking, Sci Rep, 4, 7213, 10.1038/srep07213 Windrich M., 2016, Active lower limb prosthetics: A systematic review of design issues and solutions, Biomed Eng Online, 15, 140, 10.1186/s12938-016-0284-9 D.C.Norvell J.M.Czerniecki G.E.Reiber C.Maynard J.A.Pecoraro N.S.Weiss.The prevalence of knee pain and symptomatic knee osteoarthritis among veteran traumatic amputees and nonamputees.Arch Phys Med Rehabil86:487–493 Mar. 2005. 10.1016/S0966-6362(02)00066-8 10.2522/ptj.20090125 Everding V.Q., 2012, Assessment of transfemoral amputees using C‐Leg and Power Knee for ascending and descending inclines and steps, J Rehabil Res Dev, 49, 831, 10.1682/JRRD.2010.12.0234 10.1016/j.gaitpost.2011.07.001 Esposito E.R., 2015, Sound limb loading in individuals with unilateral transfemoral amputation across a range of walking velocities, Clin Biomech, 30, 1049, 10.1016/j.clinbiomech.2015.09.008 10.1080/00140139.2011.586060 K.Lechler.Biomechanics of sit‐to‐stand and stand‐to‐sit movements in unilateral transfemoral amputees using powered and non‐powered prosthetic knees. Paper presented at:OT‐World 2014 Congress Leipzig Lecture 5038] Abstract 1459] OT‐World 2014 Congress Leipzig Germany May 16  2014. Simon A.M., 2014, Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes, PLoS One, 9, e99387, 10.1371/journal.pone.0099387 Villa C., 2017, Cross‐slope and level walking strategies during swing in individuals with lower limb amputation, Arch Phys Med Rehabil, 98, 1149, 10.1016/j.apmr.2016.10.007 Whitehead J.M.A., 2014, Does a microprocessor‐controlled prosthetic knee affect stair ascent strategies in persons with transfemoral amputation?, Clin Orthop Relat Res, 472, 3093, 10.1007/s11999-014-3484-2 Wolf E.J., 2012, Assessment of transfemoral amputees using C‐Leg and Power Knee for ascending and descending inclines and steps, J Rehabil Res Dev, 49, 831, 10.1682/JRRD.2010.12.0234 Au S., 2008, Powered ankle‐foot prosthesis to assist level‐ground and stair‐descent gaits, Neural Netw, 21, 654, 10.1016/j.neunet.2008.03.006 Aldridge J.M., 2012, Stair ascent kinematics and kinetics with a powered lower leg system following transtibial amputation, Gait Posture, 36, 291, 10.1016/j.gaitpost.2012.03.013 Kannenberg A., 2017, Active upper‐limb prostheses: The international perspective, J Prosthet Orthot, 29, P57, 10.1097/JPO.0000000000000158 Michael J.W., 2004, Atlas of Amputations and Limb Deficiencies: Surgical, Prosthetic, and Rehabilitation Principles 10.1080/03093640600994581 Lynsay Whelan M.S., 2014, Individualizing goals for users of externally powered partial hand prostheses, J Rehabil Res Dev, 51, 885, 10.1682/JRRD.2013.08.0181 10.1097/JPO.0b013e31817ecb16 10.3389/fnins.2016.00209 10.3109/03093649909071611 10.1682/JRRD.2009.03.0027 10.1016/j.clinbiomech.2003.11.012 Atzori M., 2015, Control capabilities of myoelectric robotic prostheses by hand amputees: A scientific research and market overview, Front Syst Neurosci, 9, 10.3389/fnsys.2015.00162 R.D.Lipschutz.Impact of emerging technologies on clinical considerations: Targeted muscle reinnervation surgeries pattern recognition implanted electrodes osseointegration and three‐dimensional printed solutions.J Prosthet Orthot2017 29P35‐P39 10.2147/ORR.S71468 10.1016/j.eswa.2013.02.023 10.1109/TNSRE.2011.2163529 10.1038/sdata.2014.53 10.1109/TBME.2008.2005942 10.1111/j.1525-1594.2011.01219.x 10.1109/TNSRE.2005.856072 10.3389/fnins.2016.00116