Motorized Biomechatronic Upper and Lower Limb Prostheses—Clinically Relevant Outcomes
Tóm tắt
Tài liệu tham khảo
10.1177/1071100713475357
10.1016/j.apmr.2007.11.005
WHO, 2001, International Classification of Functioning, Disability and Health: ICF
Cocchiarella L., 2001, Guides to the Evaluation of Permanent Impairment
10.7547/87507315-91-1-13
10.3109/17483107.2011.635405
10.1007/s11999-014-3647-1
10.1682/JRRD.2014.09.0210
Pickle N.T., 2017, Segmental contributions to sagittal‐plane whole‐body angular momentum when using powered compared to passive ankle‐foot prostheses on ramps, IEEE Int Conf Rehabil Robot Proc, 2017, 1609
10.1177/0309364616650085
Au S.K., 2007, Powered ankle‐foot prosthesis for the improvement of amputee ambulation, Conf Proc IEEE Eng Med Biol Soc, 2007, 3020
Mancinelli C., 2011, Comparing a passive‐elastic and a powered prosthesis in transtibial amputees, Conf Proc IEEE Eng Med Biol Soc, 2011, 8255
10.1098/rspb.2011.1194
Gates D.H., 2013, Kinematic comparison of walking on uneven ground using powered and unpowered prostheses, Clin Biomech. Bristol Avon, 28, 467, 10.1016/j.clinbiomech.2013.03.005
Esposito E.R., 2016, Step‐to‐step transition work during level and inclined walking using passive and powered ankle–foot prostheses, Prosthet Orthot Int, 40, 311, 10.1177/0309364614564021
Grimmer M., 2017, Feasibility study of transtibial amputee walking using a powered prosthetic foot, IEEE Int Conf Rehabil Robot Proc, 2017, 1118
Ferris A.E., 2012, Evaluation of a powered ankle‐foot prosthetic system during walking, Arch Phys Med Rehabil, 93, 1911, 10.1016/j.apmr.2012.06.009
10.1186/1743-0003-10-49
Hill D., 2013, Effects of a powered ankle‐foot prosthesis on kinetic loading of the contralateral limb: A case series, IEEE Int Conf Rehabil Robot Proc, 2013, 6650375
Esposito E.R., 2014, Biomechanical risk factors for knee osteoarthritis when using passive and powered ankle–foot prostheses, Clin Biomech, 29, 1186, 10.1016/j.clinbiomech.2014.09.005
10.1097/JPO.0000000000000029
Brandt A., 2016, Does the impedance of above‐knee powered prostheses need to be adjusted for load‐carrying conditions?, Conf Proc IEEE Eng Med Biol Soc, 2016, 5075
Creylman V., 2016, Assessment of transfemoral amputees using a passive microprocessor‐controlled knee versus an active powered microprocessor‐controlled knee for level walking, Biomed Eng Online, 15, 142, 10.1186/s12938-016-0287-6
10.1371/journal.pone.0147661
Pasquina P.F., 2017, Case series of wounded warriors receiving initial fit PowerKneeTM prosthesis, JPO J Prosthet Orthot, 29, 88, 10.1097/JPO.0000000000000123
10.1016/j.gaitpost.2009.06.009
Wolf S.I., 2009, Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot, Clin Biomech (Bristol, Avon), 24, 860, 10.1016/j.clinbiomech.2009.08.007
10.1016/j.gaitpost.2010.04.011
10.1682/JRRD.2012.05.0093
10.1016/j.jbiomech.2014.08.001
10.1016/j.gaitpost.2015.05.011
Pickle N.T., 2016, Whole‐body angular momentum during sloped walking using passive and powered lower‐limb prostheses, J Biomech, 49, 3397, 10.1016/j.jbiomech.2016.09.010
10.1109/TNSRE.2015.2428196
Pickle N.T., 2017, The functional roles of muscles, passive prostheses, and powered prostheses during sloped walking in people with a transtibial amputation, J Biomech Eng, 139, 10.1115/1.4037938
Burger H., 2016, A survey of overuse problems in patients with acquired or congenital upper limb deficiency, Prosthet Orthot Int, 40, 497, 10.1177/0309364615584658
10.1191/0269215504cr716oa
A.Wanamaker L.Whelan J.Farley A.Chaudhari.Comparison of functionality and compensation with and without powered partial hand multiarticulating prostheses. InMEC 2017 Conference Proceedings Fredericton New Brunswick Canada 2017 p. ID #108.
Vilarino M., 2015, Outcomes and perception of a conventional and alternative myoelectric control strategy: A study of experienced and new multiarticulating hand users, JPO J Prosthet Orthot, 27, 53, 10.1097/JPO.0000000000000055
C.Baschuk P.Hoeun L.Katzenberger D.Latour T.Passero E.Tompkins.Utilization of pattern recognition with patients initially contraindicated for myoelectric control in upper limb prostheses. In:First World Congress on Innovations in Amputation Surgery and Prosthetic Technologies Conference Proceedings;2016; Chicago Illinois.
Kuiken T.A., 2016, A comparison of pattern recognition control and direct control of a multiple degree‐of‐freedom transradial prosthesis, IEEE J Transl Eng Health Med, 4, 1, 10.1109/JTEHM.2016.2616123
Wurth S.M., 2014, A real‐time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts' law style assessment procedure, J Neuroeng Rehabil, 11, 91, 10.1186/1743-0003-11-91
10.1016/j.apmr.2008.05.016
10.1016/S0140-6736(07)60193-7
10.1038/s41598-017-14386-w
10.1055/s-0035-1544166
10.1001/jama.2009.116
10.1016/j.jneumeth.2014.07.016
10.1088/1741-2560/13/1/016001
10.1126/scitranslmed.3006820
Thakor N.V., 2014, Catching brain waves in a net, IEEE Spectr, 51, 40, 10.1109/MSPEC.2014.6882987
10.1038/nature04970
10.1590/S1679-45082014AO3132
10.1016/j.jphys.2014.09.003
10.1177/0309364614542725
10.1016/j.jvs.2011.01.046
10.1053/apmr.2001.24295
Geurts A.C., 1992, Postural reorganization following lower limb amputation. Possible motor and sensory determinants of recovery, Scand J Rehabil Med, 24, 83, 10.2340/1650197792248390
10.1016/j.gaitpost.2009.02.009
10.1016/j.apmr.2008.08.220
10.1080/03093640500199612
10.1016/j.gaitpost.2006.12.007
Vrieling A.H., 2008, Uphill and downhill walking in unilateral lower limb amputees, Gait Posture, 28, 235, 10.1016/j.gaitpost.2007.12.006
10.3109/03093640903074891
10.1109/TNSRE.2008.920075
Kristjansson K., 2017, Converging Clinical and Engineering Research on Neurorehabilitation II, 571, 10.1007/978-3-319-46669-9_94
10.1186/1743-0003-12-1
Zhang F., 2012, Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 2768, 10.1109/EMBC.2012.6346538
Spanias J.A., 2018, Online adaptive neural control of a robotic lower limb prosthesis, J Neural Eng, 15, 016015, 10.1088/1741-2552/aa92a8
10.1097/PHM.0000000000000265
Shirota C., 2014, Recovery strategy identification throughout swing phase using kinematic data from the tripped leg, Conf Proc IEEE Eng Med Biol Soc, 2014, 6199
10.1016/j.gaitpost.2012.12.013
10.1016/j.apmr.2009.12.014
10.1002/pri.260
10.1016/j.gaitpost.2007.12.002
Nederhand M.J., 2012, Dynamic Balance Control (DBC) in lower leg amputee subjects; Contribution of the regulatory activity of the prosthesis side, Clin Biomech, 27, 40, 10.1016/j.clinbiomech.2011.07.008
G.Gini U.Scarfogliero M.Folgheraiter.Human‐oriented biped robot design: Insights into the development of a truly anthropomorphic leg. In:IEEE International Conference on Robotics and Automation 2007:2910–2915.
10.1682/JRRD.2014.01.0031
H.F.Ossur.Power Knee Technical Manual.www.ossur.com. Published 2017.
10.1016/j.apmr.2013.07.020
Highsmith M.J., 2010, Differences in the spatiotemporal parameters of transtibial and transfemoral amputee gait, JPO J Prosthet Orthot, 22, 26, 10.1097/JPO.0b013e3181cc0e34
10.1098/rspb.2001.1761
10.1016/j.jbiomech.2013.12.011
Kim M., 2015, Once‐per‐step control of ankle‐foot prosthesis push‐off work reduces effort associated with balance during walking, J Neuroeng Rehabil, 12, 43, 10.1186/s12984-015-0027-3
10.1080/00140130802567079
10.1371/journal.pone.0100125
Wanamaker A.B., 2017, When to biomechanically examine a lower‐limb amputee: A systematic review of accommodation times, Prosthet Orthot Int, 41, 431, 10.1177/0309364616682385
10.1007/s00421-008-0764-0
Hofstad C., 2004, Prescription of prosthetic ankle‐foot mechanisms after lower limb amputation, Cochrane Database Syst Rev, CD003978
Jarvis H.L., 2017, Temporal spatial and metabolic measures of walking in highly functional individuals with lower limb amputations, Arch Phys Med Rehabil, 98, 1389, 10.1016/j.apmr.2016.09.134
Esposito E.R., 2014, Does unilateral transtibial amputation lead to greater metabolic demand during walking?, J Rehabil Res Dev, 51, 1287, 10.1682/JRRD.2014.06.0141
10.1177/0309364617708649
10.1249/mss.0b013e31802b3562
10.1016/j.gaitpost.2006.07.002
Caputo J.M., 2014, Prosthetic ankle push‐off work reduces metabolic rate but not collision work in non‐amputee walking, Sci Rep, 4, 7213, 10.1038/srep07213
Windrich M., 2016, Active lower limb prosthetics: A systematic review of design issues and solutions, Biomed Eng Online, 15, 140, 10.1186/s12938-016-0284-9
D.C.Norvell J.M.Czerniecki G.E.Reiber C.Maynard J.A.Pecoraro N.S.Weiss.The prevalence of knee pain and symptomatic knee osteoarthritis among veteran traumatic amputees and nonamputees.Arch Phys Med Rehabil86:487–493 Mar. 2005.
10.1016/S0966-6362(02)00066-8
10.2522/ptj.20090125
Everding V.Q., 2012, Assessment of transfemoral amputees using C‐Leg and Power Knee for ascending and descending inclines and steps, J Rehabil Res Dev, 49, 831, 10.1682/JRRD.2010.12.0234
10.1016/j.gaitpost.2011.07.001
Esposito E.R., 2015, Sound limb loading in individuals with unilateral transfemoral amputation across a range of walking velocities, Clin Biomech, 30, 1049, 10.1016/j.clinbiomech.2015.09.008
10.1080/00140139.2011.586060
K.Lechler.Biomechanics of sit‐to‐stand and stand‐to‐sit movements in unilateral transfemoral amputees using powered and non‐powered prosthetic knees. Paper presented at:OT‐World 2014 Congress Leipzig Lecture 5038] Abstract 1459] OT‐World 2014 Congress Leipzig Germany May 16 2014.
Simon A.M., 2014, Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes, PLoS One, 9, e99387, 10.1371/journal.pone.0099387
Villa C., 2017, Cross‐slope and level walking strategies during swing in individuals with lower limb amputation, Arch Phys Med Rehabil, 98, 1149, 10.1016/j.apmr.2016.10.007
Whitehead J.M.A., 2014, Does a microprocessor‐controlled prosthetic knee affect stair ascent strategies in persons with transfemoral amputation?, Clin Orthop Relat Res, 472, 3093, 10.1007/s11999-014-3484-2
Wolf E.J., 2012, Assessment of transfemoral amputees using C‐Leg and Power Knee for ascending and descending inclines and steps, J Rehabil Res Dev, 49, 831, 10.1682/JRRD.2010.12.0234
Au S., 2008, Powered ankle‐foot prosthesis to assist level‐ground and stair‐descent gaits, Neural Netw, 21, 654, 10.1016/j.neunet.2008.03.006
Aldridge J.M., 2012, Stair ascent kinematics and kinetics with a powered lower leg system following transtibial amputation, Gait Posture, 36, 291, 10.1016/j.gaitpost.2012.03.013
Kannenberg A., 2017, Active upper‐limb prostheses: The international perspective, J Prosthet Orthot, 29, P57, 10.1097/JPO.0000000000000158
Michael J.W., 2004, Atlas of Amputations and Limb Deficiencies: Surgical, Prosthetic, and Rehabilitation Principles
10.1080/03093640600994581
Lynsay Whelan M.S., 2014, Individualizing goals for users of externally powered partial hand prostheses, J Rehabil Res Dev, 51, 885, 10.1682/JRRD.2013.08.0181
10.1097/JPO.0b013e31817ecb16
10.3389/fnins.2016.00209
10.3109/03093649909071611
10.1682/JRRD.2009.03.0027
10.1016/j.clinbiomech.2003.11.012
Atzori M., 2015, Control capabilities of myoelectric robotic prostheses by hand amputees: A scientific research and market overview, Front Syst Neurosci, 9, 10.3389/fnsys.2015.00162
R.D.Lipschutz.Impact of emerging technologies on clinical considerations: Targeted muscle reinnervation surgeries pattern recognition implanted electrodes osseointegration and three‐dimensional printed solutions.J Prosthet Orthot2017 29P35‐P39
10.2147/ORR.S71468
10.1016/j.eswa.2013.02.023
10.1109/TNSRE.2011.2163529
10.1038/sdata.2014.53
10.1109/TBME.2008.2005942
10.1111/j.1525-1594.2011.01219.x
10.1109/TNSRE.2005.856072
10.3389/fnins.2016.00116