Motor recovery monitoring using acceleration measurements in post acute stroke patients

Jayavardhana Gubbi1, Aravinda S. Rao, Kun Fang, Bernard Yan, Marimuthu Palaniswami
1Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Melbourne, VIC-3010, Australia.

Tóm tắt

AbstractBackgroundStroke is one of the major causes of morbidity and mortality. Its recovery and treatment depends on close clinical monitoring by a clinician especially during the first few hours after the onset of stroke. Patients who do not exhibit early motor recovery post thrombolysis may benefit from more aggressive treatment.MethodA novel approach for monitoring stroke during the first few hours after the onset of stroke using a wireless accelerometer based motor activity monitoring system is developed. It monitors the motor activity by measuring the acceleration of the arms in three axes. In the presented proof of concept study, the measured acceleration data is transferred wirelessly using iMote2 platform to the base station that is equipped with an online algorithm capable of calculating an index equivalent to the National Institute of Health Stroke Score (NIHSS) motor index. The system is developed by collecting data from 15 patients.ResultsWe have successfully demonstrated an end-to-end stroke monitoring system reporting an accuracy of calculating stroke index of more than 80%, highest Cohen’s overall agreement of 0.91 (with excellentκcoefficient of 0.76).ConclusionA wireless accelerometer based ‘hot stroke’ monitoring system is developed to monitor the motor recovery in acute-stroke patients. It has been shown to monitor stroke patients continuously, which has not been possible so far with high reliability.

Từ khóa


Tài liệu tham khảo

Thrift AG, Dewey HM, Macdonell RAL, McNeil JJ, Donnan GA: Stroke incidence on the east coast of Australia : The North East Melbourne Stroke Incidence Study (NEMESIS). Stroke 2000, 31(9):2087–2092. 10.1161/01.STR.31.9.2087

The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group: Tissue Plasminogen activator for acute ischemic stroke. New England JMed 1995, 333(24):1581–1588.

Saposnik G, Baibergenova A, Hachinski V: Weekends: a dangerous time for having a stroke? Stroke 2007, 38: 1211–1215. 10.1161/01.STR.0000259622.78616.ea

Lorincz K, Malan DJ, Fulford-Jones TRF, Nawoj A, Clavel A, Shnayder V, Mainland G, Welsh M, Moulton S: Sensor networks for emergency response: challenges and opportunities. IEEE Pervasive Comput 2004, 3(4):16–23. 10.1109/MPRV.2004.18

Shnayder V, Chen B, Lorincz K, Jones TRFF, Welsh M: Sensor networks for medical care. In Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems. New york: ACM; 2005:314–314.

Bonato P: Wearable sensors/systems and their impact on biomedical engineering. Eng Med Biol Mag, IEEE 2003, 22(3):18–20.

Lyden P, Lu M, Jackson C, Marler J, Kothari R, Brott T, Zivin J: Underlying structure of the National Institutes of Health Stroke Scale: results of a factor analysis. NINDS tPA Stroke Trial Investigators. Stroke 1999, 30(11):2347–2354. PubMed PMID: 10548669 10.1161/01.STR.30.11.2347

Yang CC, Hsu YL: A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010, 10(8):7772–7788. 10.3390/s100807772

Bouten CVC, Koekkoek KTM, Verduin M, Kodde R, Janssen JD: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. Biomed Eng, IEEE Trans on 1997, 44(3):136–147. 10.1109/10.554760

Yang JY, Wang JS, Chen YP: Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers. Pattern Recogn Lett 2008, 29(16):2213–2220. 10.1016/j.patrec.2008.08.002

Roy SH, Cheng MS, Chang SS, Moore J, De Luca G, Nawab SH, De Luca CJ: A combined sEMG and accelerometer system for monitoring functional activity in stroke. Neural Syst Rehabilitation Eng, IEEE Trans on 2009, 17(6):585–594.

Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A: Assessing wolf motor function test as outcome measure for research in patients after stroke. Stroke 2001, 32(7):1635–1639. 10.1161/01.STR.32.7.1635

Parnandi A, Wade E, Mataric M: Motor function assessment using wearable inertial sensors. Conf Proc IEEE Eng Med Biol Soc 2010, 2010: 86–89. PubMed PMID: 21095642

Wade E, Parnandi AR, Mataric MJ: Automated administration of the Wolf Motor Function Test for post-stroke assessment. Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2010 4th International Conference on 1–7. http://dx.doi.org/10.4108/ICST.PERVASIVEHEALTH2010.8903

Patel S, Hughes R, Hester T, Stein J, Akay M, Dy JG, Bonato P: A Novel approach to monitor rehabilitation outcomes in stroke survivors using wearable Technology. Proc Ieee 2010, 98(3):450–461.

Lopez-Meyer P, Fulk GD, Sazonov ES: Automatic detection of temporal gait parameters in poststroke individuals. Inf Technol Biomed, IEEE Trans on 2011, 15(4):594–601.

Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E: Wireless sensor networks: a survey. Comput Networks 2002, 38(4):393–422. 10.1016/S1389-1286(01)00302-4

Ambrosini E, Ferrante S, Schauer T, Ferrigno G, Molteni F, Pedrocchi A: Design of a symmetry controller for cycling induced by electrical stimulation: preliminary results on post acute stroke patients. Artif Organs 2010, 34(8):663–684.

Wang S, Yang J, Chen N, Chen X, Zhang Q: Human activity recognition with user-free accelerometers in the sensor networks. In International Conference on Neural Networks and Brain. Beijing: IEEE 2005, 1212–1217.

Kundel HL, Polansky M: Measurement of observer agreement. Radiology 2003, 228: 303–308. 10.1148/radiol.2282011860

Cohen J: Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull 1968, 70(4):213–220. PubMed PMID: 19673146