Xi măng và vữa - Cách đánh giá sự suy thoái của vữa và xi măng

Archaeological and Anthropological Sciences - Tập 13 - Trang 1-11 - 2021
Mauro Francesco La Russa1, Silvestro Antonio Ruffolo1
1Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy

Tóm tắt

Sự suy thoái của vữa và lớp trát có thể đại diện cho một mối đe dọa cho sự bảo tồn của chúng. Đó là lý do tại sao việc hiểu rõ các cơ chế suy thoái và xác định các mẫu suy thoái được khuyến nghị mạnh mẽ cho những ai chịu trách nhiệm bảo tồn các di tích khảo cổ và di sản kiến trúc nói chung. Tại đây, các tác nhân suy thoái chính có thể được phát hiện trên vữa và lớp trát đã được mô tả và cách chúng hoạt động để gây ra sự suy thoái. Hơn nữa, một cái nhìn tổng quan về các phân tích có thể được thực hiện trực tiếp tại hiện trường và ở phòng thí nghiệm cũng đã được báo cáo. Kiến thức có thể đạt được bằng cách sử dụng các phương pháp này là một công cụ thiết yếu để xây dựng một kế hoạch bảo tồn phù hợp. Ngoài ra, một phân tích chi tiết hơn cũng có thể có mục đích nghiên cứu, vì chúng có thể hữu ích trong việc làm rõ một số cơ chế và tương tác vẫn còn mơ hồ.

Từ khóa

#suy thoái #vữa #lớp trát #bảo tồn #di tích #di sản kiến trúc

Tài liệu tham khảo

Aceto M (2021) The palette of organic colourants in wall paintings. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01392-3 Agrawal O, Singh T, Kharbade B, Jain K, Joshi G (1987) Discolouration of Taj Mahal marble - a case study. Discolouration of Taj Mahal marble — a case study. ICOM Committee for Conservation, pp. 447–452. Angeli M, Bigas JP, Benavente D, Merendez B, Hebert R, David C (2007) Salt crystallization in pores: quantification and estimation of damage. International Journal of Geosciences Environmental Geology Salt decay, Volume 52 (2) Edited by S. Siegesmund & M. Steiger Springer Science, pp. 205–213 Antonelli F, Perasso CS, Ricci S, Petriaggi BD (2015) Impact of the sipunculan Aspidosiphon muelleri diesing, 1851 on calcareous underwater cultural heritage. Int Biodeterior Biodegradation 100:133–139 Ariño X, Gomez-Bolea A, Saiz-Jimenez C (1997) Lichens on ancient mortars. Int Biodeterior Biodegradation 40(2–4):217–224 Arizzi A, Cultrone G (2021) Mortars and plasters: how to characterise hydraulic mortars. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01404-2 Arnold A (1984) Determination of mineral salts from monuments. Studies in Conservation 29(3):129–138 Barca D, Comite V, Belfiore CM, Bonazza A, RussaMF La, Ruffolo SA, Crisci GM, Pezzino A, Sabbioni C (2014) Impact of air pollution in deterioration of carbonate building materials in Italian urban environments. App Geochem 48:122–131 Becker H (2021) Pigments – colorants terminology: to each its own name. Pigment nomenclature in the ancient Near East, Greece, and Rome. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01394-1 Berthelin J. (1988) Microbial weathering processes in natural environments. In: Lerman A., Meybeck M. (eds) Physical and chemical weathering in geochemical cycles. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol 251. Binda L, Baronio G (1987) Mechanisms of masonry decay due to salt crystallization. Durab Build Mater 4:227–240 Brancato FS (1986) Patologia di un degrado, Flos Tectorii, Recuperare, No. 22 Marzo - Aprile, Milano, Italy Brandon C, Hohlfelder RL, Jackson MD, Oleson JP (2014) Building for eternity: the history and technology of Roman concrete engineering in the sea. Oxbow Books, Oxford, p 327 Bruni S, Cariati F, Fermo P, Cairati P, Alessandrini G, Toniolo L (1997) White lumps in fifth- to seventeenth-century AD mortars from Northern Italy. Archaeometry 39(1):1–7 Bruni S, Cariati F, Fermo P, Pozzi A, Toniolo L (1998) Characterization of ancient magnesian mortars coming from northern Italy. Thermochim Acta 321(1–2):161–165 Burgio L (2021) Pigments, dyes and inks – their analysis on manuscripts, scrolls and papyri. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01403-3 Caneva G, Salvadori O (1989) Biodeterioration of stone. The deterioration and conservation of stone, pp. 182–234. Caroselli M, Ruffolo SA, Piqué F (2021) Mortars and plasters – how to manage mortars and plasters conservation. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01409-x Cavallo G, Riccardi MP (2021) Glass-based pigments in painting. Archaeol Anthropol Sci (forthcoming) Charola AE (2008) Salts in the deterioration of porous materials: an overview. J Am Ins Conserv 39(3):327–343 Collepardi, (1999) Thaumasite formation and deterioration in historic buildings. Cement Concr Compos 21:147–154 Comite V, Fermo P (2018) The effects of air pollution on cultural heritage: the case study of Santa Maria delle Grazie al Naviglio Grande (Milan). European Physical Journal Plus, 133 (12), art. no. 556 Cultrone G, Arizzi A, Sebastián E, Rodriguez-Navarro C (2008) Sulfation of calcitic and dolomitic lime mortars in the presence of diesel particulate matter. Environ Geol 56:741–752 Darlington, A. Ecology of walls (1981) Heinemann educational publishers De Freitas SS, De Freitas VP, Barreira E (2014) Detection of façade plaster detachments using infrared thermography - a nondestructive technique. Constr Build Mater 70:80–87 DeLaine J (2021) Production, transport and on-site organisation of Roman mortars and plasters. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01401-5 Domingo Sanz I, Chieli A (2021) Characterising the pigments and paints of prehistoric artists. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01397-y Dornieden T, Gorbushina AA, Krumbein WE (2000) Patina (physical and chemical interactions of sub-aerial biofilms with objects of art) of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage, pp. 105–119. Ergenç D, Fort R, Varas−Muriel MJ, Alvarez de Buergo M (2021) Mortars and plasters – how to characterise aerial mortars and plasters. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01398-x Fitzner B, Heinrichs K, Volker M (1996) Model for salt weathering at Maltese globigerina limestones, European Commission Research Workshop Proceedings Origin, Mechanisms and effects on salts on degradation of monuments in marine and continental environments, Editor F. Zecca, Bari, Italy, pp. 25–27 Frank D, Spiegelman G, Davis W, Wagner E, Lyons E, Pace N (2003) Culture-independent molecular analysis of microbial constituents of the healthy human outer ear. J Clin Microbiol 41:295–303 Gaylarde C (2020) Influence of environment on microbial colonization of historic stone buildings with emphasis on cyanobacteria. Heritage 3:1469–1482 Gaylarde CC, Morton LHG (1999) Deteriogenic biofilms on buildings and their control: a review. Biofouling 14(1):59–74 Gliozzo E (2021) Pigments - Mercury-based red (cinnabar-vermilion) and white (calomel) and their degradation products. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01402-4 Gliozzo E, Burgio L (2021) Pigments – Arsenic-based yellows and reds. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01431-z Gliozzo E, Ionescu C (2021) Pigments – Lead-based whites, reds, yellows and oranges and their alteration phases. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01407-z Gliozzo E, Pizzo A, La Russa MF (2021) Mortars, plasters and pigments - research questions and sampling criteria. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01393-2 Gobbi G, Zappia G, Sabbioni C (1998) Sulphite quantification on damaged stones and mortars. Atmos Environ 32(4):783–789 Gonzalez J, Saiz-Jimenez C (2004) Microbial diversity in biodeteriorated monuments as studied by denaturing gradient gel electrophoresis. J Sep Sci 27:174–180 Gu JD, Ford TE, Berke NS, Mitchell R (1998) Biodeterioration of concrete by the fungus Fusarium. Int Biodeterior Biodegradation 41(2):101–109 Guillitte O (1995) Bioreceptivity: a new concept for building ecology studies. Sci Total Environ 167(1–3):215–220 Hees RPJ, Binda L, Papayianni I, Toumbakari E (2004) Characterisation and damage analysis of old mortars. Mater Struct 37:644–648 Jackson MD, Mulcahy SR, Chen H, Li Y, Li Q, Cappelletti P, Wenk HR (2017) Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. Am Mineral 102(7):1435–1450 Knapp CW, Christidis GE, Venieri D, Gounaki I, Gibney-Vamvakari J, Stillings M, Photos-Jones E (2021) The ecology and bioactivity of some Greco-Roman medicinal minerals: the case of Melos earth pigments. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01396-z Koestler RJ, Warscheid T, Nieto F (1997) Biodeterioration: risk factors and their management in saving our architectural heritage: the conservation of historic stone structures, pp. 25–36 Krumbein WE, Diakumaku E, Gehrmann C, Gorbushina A, Grore G, Heyn C, Kuroczin J, Schostak V, Sterflinger K, Warscheid T, Wolf B, Wollenzien U, Yun-Kyung Y, Petersen K (1996) Chemoorganotrophic microorganisms as agents in the destruction of objects of art: a summary. Proceedings of the Eighth International Congress on Deterioration and Conservation of Stone, pp. 631–636 Kurakov AV, Somova NG, Ivanovskii RN (1999) Micromycetes populating limestone and red brick surfaces of the Novodevichy Convent masonry. Microbiology 68:232–241 Laiz L, Piñar G, Lubitz W, Saiz-Jimenez C (2003) Monitoring the colonization of monuments by bacteria: cultivation versus molecular methods. Environ Microbiol 5:72–74 Lancaster LC (2021) Mortars and plasters – how mortars were made. The Literary Sources. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01395-0 Mastrotheodoros GP, Beltsios KG, Bassiakos Y (2021) Pigments – iron-based red, yellow and brown ochres. Archaeol Anthropol Sci (forthcoming) Maurenbrecher P (1998) Water-shedding details improve masonry performance, Construction Technology Update 23, Institute for Research in Construction, National research Council, Canada, 1998 Mosquera MJ, Benitez D, Perry SH (2002) Pore structure in mortars applied on restoration. Effect on properties relevant to decay of granite buildings. Cement and Concr Res 32:1883–1888 Murat Z (2021) Wall paintings through the ages. The medieval period (Italy, 12th-15th century). Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01410-4 Negi A, Sarethy IP (2019) Microbial biodeterioration of cultural heritage: events, colonization, and analyses. Microbial Ecology 78(4):1014–1029 Palla F, Federico C, Russo R, Anello L (2002) Identification of Nocardia restricta in biodegraded sandstone monuments by PCR and nested-PCR DNA amplification. FEMS Microbiol Ecol 39:85–89 Palmer RJ, Siebert J, Hirsch P (1991) Biomass and organic acids in sandstone of a weathering building: production by bacterial and fungal isolates. Microbial Ecol 21(1):253–266 Papayianni I, Stefanidou M (2001) The evolution of porosity in lime based mortars. Proc. 8th Euroseminar on Microscopy Applied to Buildig Materials, Athens, Greece Pérez-Arantegui J (2021) Not only wall paintings - pigments for cosmetics. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01399-w Pozo-Antonio JS, Pereira MFC, Rocha CSA (2017) Microscopic characterisation of black crusts on different substrates. Sci Total Environ 584–585:291–306 Randazzo L, Montana G, Alduina R, Quatrini P, Tsantini E, Salemi B (2015) Flos tectorii degradation of mortars: an example of synergistic action between soluble salts and biodeteriogens. J Cult Herit 16(6):838–847 Resende MA, Rezende GC, Viana EV, Becker TW, Warscheid T (1996) Acid production by fungi isolated from historic monuments in the Brazilian state of Minas Gerais. In: Biodegradation & Biodeterioration in Latin America; Gaylarde, C.C.; de SaA', E.L.; Gaylarde, P.M., Eds.; Mircen/UNEP/UNESCO/ICRO-FEPAGRO/UFRGS: Porto Alegre, pp. 65–67 Ricca M, La Russa MF (2020) Challenges for the Protection of Underwater Cultural Heritage (UCH), from Waterlogged and weathered stone materials to conservation strategies: an overview. Heritage 3:402–411 Ricci S, Antonelli F, Perasso CS, Poggi D, Casoli E (2016) Bioerosion of submerged lapideous artefacts: role of endolithic rhizoids of Acetabularia acetabulum (Dasycladales, Chlorophyta). Int Biodeterior Biodegradation 107:10–16 Ruffolo SA, Comite V, La Russa MF, Belfiore CM, Barca D, Bonazza A, Crisci GM, Pezzino A, Sabbioni C (2015) An analysis of the black crusts from the Seville Cathedral: a challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources. Scie Total Environ 502:157–166 La Russa MF, Comite V, Aly N, Barca D, Fermo P, Rovella N, Antonelli F, Tesser E, Aquino M, Ruffolo SA (2018) Black crusts on Venetian built heritage, investigation on the impact of pollution sources on their composition. European Physical Journal Plus, 133 (9), art. no. 370 Salvadori M, Sbrolli C (2021) Wall paintings through the ages. The Roman period: Republic and early Empire. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01411-3 Salvadori O, Nugari MP (1988) The effect of microbial growth on synthetic polymers used on works of art. Biodeterioration 7:424–427 Sanmartín P, Miller AZ, Prieto B, Viles H (2021) Revisiting and reanalysing the concept of bioreceptivity 25 years on. Science of The Total Environment, 770, 145314 Scherer GW (2004) Stress from crystallization of salt. Cement Concr Res 34:1613–1624 Stefanidou M, Papayianni I (2006) Salt accumulation in historic and repair mortars, heritage, weathering and conservation, Editor R. Fort, M. Alvarez de Buergo, Gomez-Heras & Vazquez-Calco, Taylor & Francis, pp. 269–272 Steiger M, Wolf F, Dannecker W (1993) Deposition and enrichment of atmospheric pollutants on building stones as determined by field exposure experiments. Conservation of Stone and Other Materials, pp. 35–42 Švarcová S, Hradil D, Hradilová J, Čermáková Z (2021) Pigments – copper-based greens and blues. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01406-0 Taylor PD (1990) The impact of the SEM in studies of living and fossil bryozoans. Syst Assoc Spec 41:259–280 Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62:1–103 Theoulakis P, Moropoulou A (1997) Microstructural and mechanical parameters determining the susceptibility of porous building stones to salt decay. Constr Build Mater 11:65–71 Tiano P, Biagiotti L, Bracci S (2000) Biodegradability of products used in monuments’ conservation, in Microbes and art: the role of microbial communities in the degradation and protection of cultural heritage, pp. 169–182 Urzì C, De Leo F (2001) Sampling with adhesive tape strips: an easy and rapid method to monitor microbial colonization on monument surfaces. J Microbiol Methods 44:1–11 Urzi C, Criseo G, Krumbein WE, Wollenzien U, Gorbushina AA (1993) Are colour changes of rocks caused by climate, pollution, biological growth, or by interactions of the three. Conservation of Stone and Other Materials, pp. 279–286 Vergès-Belmin V. (2008) Illustrated glossary on stone deterioration patterns; monuments and sites XV; ICOMOS: Paris, France Viles HA, Moses CA (1996) SEM based studies of the combined effects of salt and biological weathering on calcareous building stones. Proc Eighth Int Cong Deterioration and Conservation of Stone 1:557–561 Vitti P (2021) Mortars and masonry - structural lime and gypsum mortars in antiquity and Middle Ages. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01408-y Warscheid T (1996) Impacts of microbial biofilms in the deterioration of inorganic building materials and their relevance for the conservation practice. Internationale Zeitschrift Für Bauinstandsetzen 2(6):493–504 Warscheid T, Krumbein WE (1996b) General aspects and selected cases. Microbially Influenced Corrosion of Materials, pp. 273–295 Zanardini E, Abbruscato P, Ghedini N, Realini M, Sorlini C (2000) Influence of atmospheric pollutants on the biodeterioration of stone. International Biodeterioration and Biodegradation 45:35–42