Tổng hợp cấu trúc nano bạc hình hoa với hình thái và thành phần được kiểm soát

Nanoscale Research Letters - Tập 9 - Trang 1-6 - 2014
Ning Zhou1,2, Dongsheng Li1,2, Deren Yang1
1State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, People’s Republic of China
2Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, People’s Republic of China

Tóm tắt

Cấu trúc nano bạc hình hoa với hình thái và thành phần được kiểm soát đã được chuẩn bị thông qua phương pháp tổng hợp hóa ướt. Tốc độ phản ứng có thể được điều chỉnh đơn giản bằng lượng tác nhân xúc tác amoniac được thêm vào, điều này là điểm mấu chốt để xác định tỷ lệ giữa pha xếp chồng đều hình lục giác (HCP) và pha lập phương trung tâm mặt (FCC) trong các cấu trúc nano bạc. Sự tồn tại của axit formic, sản phẩm oxy hóa của nhóm aldehyde, đã được chứng minh là đóng vai trò quan trọng trong việc đạt được cấu trúc tinh thể HCP mà không ổn định bằng cách thay thế các chất hoạt động bề mặt ion bằng polyvinylpyrrolidone (PVP). Sử dụng các cấu trúc nano bạc hình hoa làm chất nền nâng cao độ ngoại vi Raman (SERS), tín hiệu Raman của Rhodamine 6G, hoặc 4-aminothiophenol với nồng độ thấp tới 10−7 M đã được phát hiện. Hơn nữa, đã được chứng minh rằng thành phần pha không có mối quan hệ trực tiếp với yếu tố cải thiện SERS, yếu tố này chủ yếu được xác định bởi lượng điểm nóng.

Từ khóa

#cấu trúc nano bạc #tổng hợp hóa ướt #SERS #HCP #FCC #axit formic #điểm nóng

Tài liệu tham khảo

Barnes WL, Dereux A, Ebbesen TW: Surface plasmon subwavelength optics. Nature 2003, 424: 824–830. Murray WA, Barnes WL: Plasmonic materials. Adv Mater 2007, 19: 3771–3782. Ming T, Chen H, Jiang R, Li Q, Wang J: Plasmon-controlled fluorescence: beyond the intensity enhancement. J Phys Chem Lett 2012, 3: 191–202. Li J, Huang Y, Ding Y, Yang Z, Li S, Zhou X, Fan F, Zhang W, Zhou Z, Wu D, Ren B, Wang Z, Tian Z: Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464: 392–395. Stiufiuc R, Iacovita C, Lucaciu CM, Stiufiuc G, Dutu AG, Braescu C, Leopold N: SERS-active silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol. Nanoscale Res Lett 2013, 8: 47–51. Zhang X, Zhang T, Zhu S, Wang L, Liu X, Wang Q, Song Y: Fabrication and spectroscopic investigation of branched silver nanowires and nanomeshworks. Nanoscale Res Lett 2012, 7: 596–602. Qi J, Li Y, Yang Wu Q, Chen Z, Wang W, Lu W, Yu X, Xu J, Sun Q: Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing. Nanoscale Res Lett 2013, 8: 1–6. Liu T, Li D, Yang D, Jiang M: Preparation of echinus-like SiO2@Ag structures with the aid of the HCP phase. Chem Commun 2011, 47: 5169–5171. Shao L, Susha AS, Cheung LS, Sau TK, Rogach AL, Wang J: Plasmonic properties of single multispiked gold nanostars: correlating modeling with experiments. Langmuir 2012, 28: 8979–8984. Gutés A, Carraro C, Maboudian R: Silver dendrites from galvanic displacement on commercial aluminum foil as an effective SERS substrate. J Am Chem Soc 2010, 132: 1476–1477. Grouchko M, Popov I, Uvarov V, Magdassi S, Kamyshny A: Coalescence of Silver nanoparticles at room temperature: unusual crystal structure transformation and dendrite formation induced by self-assembly. Langmuir 2009, 25: 2501–2503. Mulvihill MJ, Ling X, Henzie J, Yang P: Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J Am Chem Soc 2009, 132: 268–274. Zhang T, Song Y, Zhang X, Wu J: Synthesis of silver nanostructures by multistep methods. Sensors 2014, 14: 5860–5889. Lim B, Xia Y: Metal nanocrystals with highly branched morphologies. Angew Chem Int Ed 2011, 50: 76–85. Liu T, Li D, Yang D, Jiang M: Fabrication of flower-like silver structures through anisotropic growth. Langmuir 2011, 27: 6211–6217. Zhou N, Li D, Yang D: The kinetically dominated overgrowth of flower-like silver nanostructures and its application for surface-enhanced Raman scattering. Key Eng Mater 2014, 605: 259–262. Liu X, Luo J, Zhu J: Size effect on the crystal structure of silver nanowires. Nano Lett 2006, 6: 408–412. Singh A, Ghosh A: Stabilizing high-energy crystal structure in silver nanowires with underpotential electrochemistry. J Phys Chem C 2008, 112: 3460–3463. Singh A, Sai T, Ghosh A: Electrochemical fabrication of ultralow noise metallic nanowires with hcp crystalline lattice. Appl Phys Lett 2008, 93: 102107–102109. Wang B, Fei G, Zhou Y, Wu B, Zhu X, Zhang L: Controlled growth and phase transition of silver nanowires with dense lengthwise twins and stacking faults. Cryst Growth Des 2008, 8: 3073–3076. Courty A, Richardi J, Albouy P, Pileni M: How to control the crystalline structure of supracrystals of 5-nm silver nanocrystals. Chem Mater 2011, 23: 4186–4192. Huang T, Cheng T, Yen M, Hsiao W, Wang L, Chen F, Kai J, Lee C, Chiu H: Growth of Cu nanobelt and Ag belt-like materials by surfactant-assisted galvanic reductions. Langmuir 2007, 23: 5722–5726. Aherne D, Ledwith DM, Gara M, Kelly JM: Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv Funct Mater 2008, 18: 2005–2016. Shen X, Wang G, Hong X, Xie X, Zhu W, Li D: Anisotropic growth of one-dimensional silver rod - needle and plate - belt heteronanostructures induced by twins and hcp phase. J Am Chem Soc 2009, 131: 10812–10813. Liang H, Yang H, Wang W, Li J, Xu H: High-yield uniform synthesis and microstructure-determination of rice-shaped silver nanocrystals. J Am Chem Soc 2009, 131: 6068–6069. Huang X, Li S, Huang Y, Wu S, Zhou X, Li S, Gan C, Boey F, Mirkin C, Zhang H: Synthesis of hexagonal close-packed gold nanostructures. Nat Commun 2011, 2: 292–297. Huang X, Li S, Wu S, Huang Y, Boey F, Gan C, Zhang H: Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. Adv Mater 2012, 24: 979–983. Wang Y, Camargo PHC, Skrabalak SE, Gu H, Xia Y: A facile, water-based synthesis of highly branched nanostructures of silver. Langmuir 2008, 24: 12042–12046. Ren W, Guo S, Dong S, Wang E: A simple route for the synthesis of morphology-controlled and SERS-active Ag dendrites with near-infrared absorption. J Phys Chem C 2011, 115: 10315–10320. Lacroix L, Gatel C, Arenal R, Garcia C, Lachaize S, Blon T, Warot-Fonrose B, Snoeck E, Chaudret B, Viau G: Tuning complex shapes in platinum nanoparticles: from cubic dendrites to fivefold stars. Angew Chem Int Ed 2012, 51: 4690–4694. Xu S, Wang L, Li H, Yue Q, Li R, Liu J, Gu X, Zhang S: Copper ions mediated formation of three-dimensional self-assembled Ag nanostructures via a facile solution route. CrystEngComm 2013, 15: 6368–6373. Wang L, Li H, Tian J, Sun X: Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag Dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Appl Mater Interfaces 2010, 2: 2987–2991. Hu X, Wang T, Wang L, Dong S: Surface-enhanced Raman scattering of 4- aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: off-surface plasmon resonance condition. J Phys Chem C 2007, 111: 6962–6969. Naik GV, Shalaev VM, Boltasseva A: Alternative plasmonic materials: beyond gold and silver. Adv Mater 2013, 25: 3264–3294. Li J, Ding S, Yang Z, Bai M, Anema JR, Wang X, Wang A, Wu D, Ren B, Hou S, Wandlowski T, Tian Z: Extraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticles. J Am Chem Soc 2011, 133: 15922–15925. Rycenga M, Xia X, Moran CH, Zhou F, Qin D, Li Z, Xia Y: Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angew Chem Int Ed 2011, 50: 5473–5477. Li Z, Xia Y: Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett 2010, 10: 243–249.