Morphological characterization and genetic diversity analysis of Tunisian durum wheat (Triticum turgidum var. durum) accessions

BMC Genomic Data - Tập 22 - Trang 1-17 - 2021
Maroua Ouaja1, Bochra A. Bahri1,2, Lamia Aouini1, Sahbi Ferjaoui3, Maher Medini4, Thierry C. Marcel5, Sonia Hamza1
1Institut National Agronomique de Tunis, Université de Carthage, Tunis, Tunisie
2Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, USA
3Centre Régional de Recherches en Grandes Cultures (CRRGC), Beja, Tunisie
4Banque Nationale des gènes, Boulevard du Leader Yasser Arafat Z. I Charguia 1, Tunis, Tunisie
5UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France

Tóm tắt

Tunisia is considered a secondary center of diversification of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and utilization in wheat breeding programs. Here, we investigated a diverse collection of 304 local accessions of durum wheat collected from five regions and three climate stages of central and southern Tunisia. Durum wheat accessions were morphologically characterized using 12 spike- and grain-related traits. A mean Shannon-Weaver index (H′) of 0.80 was obtained, indicating high level of polymorphism among accessions. Based on these traits, 11 local landraces including Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H′ = 0.98), spike shape (H′ = 0.86), grain size (H′ = 0.94), grain shape (H′ = 0.87) and grain color (H′ = 0.86) were the most polymorphic morphological traits. The genetic diversity of these accessions was assessed using 10 simple sequence repeat (SSR) markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high (I = 0.62; He = 0.35). In addition, population structure analysis revealed 11 genetic groups, which were significantly correlated with the morphological characterization. Analysis of molecular variance (AMOVA) showed high genetic variation within regions (81%) and within genetic groups (41%), reflecting a considerable amount of admixture between landraces. The moderate (19%) and high (59%) levels of genetic variation detected among regions and among genetic groups, respectively, highlighted the selection practices of farmers. Furthermore, Mahmoudi accessions showed significant variation in spike density between central Tunisia (compact spikes) and southern Tunisia (loose spikes with open glume), may indicate an adaptation to high temperature in the south. Overall, this study demonstrates the genetic richness of local durum wheat germplasm for better in situ and ex situ conservation and for the subsequent use of these accessions in wheat breeding programs.

Tài liệu tham khảo

Moragues M, Moralejo M, Sorrells ME, Royo C. Dispersal of durum wheat landraces across the Mediterranean basin assessed by AFLPs and microsatellites. Genet Resour Crop Evol. 2007;54:1133–44.. Kabbaj H, Sall AT, Al-Abdallat A, Geleta M, Amri A, Filali-Maltouf A, Belkadi B, Ortiz R, Bassi FM. Genetic diversity within a global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of alleles exchange. Front Plant Sci. 2017;8:1277. Feldman M. Origin of cultivated wheat. In: Bonjean AP, Angus WJ, editors. The world wheat book: a history of wheat breeding. Paris: Lavoisier; 2001. p. 3–57. Royo C, Nazco R, Villegas D. The climate of the zone of origin of Mediterranean durum wheat (Triticum durum Desf.) landraces affects their agronomic performance. Genet Resour Crop Ev. 2014;61:1345–58. Bonjean AP, Angus WJ, van Ginkel M. The world wheat book: a history of wheat breeding. Paris: Lavoisier; 2016. p. 3. Royo C, Maccaferri M, Álvaro F, Moragues M, Sanguineti MC, Tuberosa R, Maalouf F, García del Moral LF, Demontis A, Rhouma S, Nachit M, Nserallah N, Villegas D. Understanding the relationships between genetic and phenotypic structures of a collection of elite durum wheat accessions. Field Crops Res. 2010;119:91–105. Alsaleh A, Baloch FS, Nachit M, Özkan H. Phenotypic and genotypic intra-diversity among Anatolian durum wheat “Kunduru” landraces. Biochem Syst Ecol. 2016;65:9–16. Bœuf F. Le blé en Tunisie. In: Annales du service botanique et agronomique de Tunisie. Tunis, Tunisia: Societe Anonyme de l'Imprimerie Rapide de Tunis; 1932. p. 18–43. Ayed S, Amara HS. Distribution and phenotypic variability aspects of some quantitative traits among durum wheat accessions. Afr Crop Sci J. 2009;16:219–24. Medini M, Hamza S, Rebai A, Baum M. Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers. Genet Resour Crop Ev. 2005;52:21–31. Gharbi MS, Deghais M, Ben AF. Breeding for resistance to Septoria tritici in durum wheat. In: Royo C, Nachit M, Di Fonzo N, Araus JL, editors. Durum wheat improvement in the Mediterranean region: new challenges. Zaragoza: CIHEAM; 2000. p. 397–401. Ammar K, Gharbi MS, Deghais M. Wheat in Tunisia. In: Bonjean AP, Angus WJ, editors. The world wheat book: a history of wheat breeding. Paris: Lavoisier; 2011. p. 443–65. Deghais M, Kouki M, Gharbi MS, El Felah M. Les Variétés de Céréales Cultivées en Tunisie (blé dur, blé tendre, orge et triticale). Tunis, Tunisia: INRAT Eds; 2007. Ben Salem M, Daaloul A, Ayadi A. Le blé dur en Tunisie. In: Durum wheat quality in the Mediterranean region. Zaragoza: CIHEAM; 1995. p. 81–91. Marzario S, Logozzo G, David JL, Spagnoletti Zeuli P, Gioia T. Molecular Genotyping (SSR) and Agronomic Phenotyping for Utilization of Durum Wheat (Triticum durum Desf.) Ex Situ Collection from Southern Italy: A Combined Approach Including Pedigreed Varieties. Genes. 2018;9:465. Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, Ban T. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot. 2015;66:3477–86. Soriano JM, Villegas D, Sorrells ME, Royo C. Durum wheat landraces from east and west regions of the Mediterranean Basin are genetically distinct for yield components and phenology. Front Plant Sci. 2018;9:80. Baraket G, Abdallah D, Mustapha SB, Tamarzizt HB, Salhi-Hannachi A. Combination of simple sequence repeat, S-locus polymorphism and phenotypic data for identification of Tunisian plum species (Prunus spp.). Biochem Genet. 2019;57:673–94. Belhadj H, Medini M, Bouhaouel I, Amara HS. Analyse de la diversité phénotypique de quelques accessions autochtones de blé dur (Triticum turgidum ssp. durum Desf.) du sud tunisien. J. New. Sci. Agri. Biotech. 2015;24:1115–25. Ayed S, Karmous C, Trifa Y, Slama AO, Amara HS. Phenotypic diversity of Tunisian durum wheat landraces. Afr Crop Sci J. 2010;18:35–42. Robbana C, Kehel Z, Naceur B, Sansaloni C, Bassi F, Amri A. Genome-wide genetic diversity and population structure of Tunisian durum wheat landraces based on DArTseq technology. Int J Mol Sci. 2019;20:1352. Slim A, Piarulli L, Chennaoui KH, Rouaissi M, Robbana C, Chaabane R, Mangini G. Genetic structure analysis of a collection of Tunisian durum wheat Germplasm. Int J Mol Sci. 2019;20:3362. IPGRI. Revised descriptors for wheat. In: International Board for Plant Genetic Resources 1985 Rome: IBPGR publisher; p 18. Union Internationale pour la Protection des Obtentions Végétales (UPOV). Principes directeurs pour la conduite de l’examen des caractères distinctifs, de l’homogénéité et de la stabilité, blé dur; 1988. p. 3–32. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research – an update. Mol. Ecol. Notes. 2012;6:288–95. https://doi.org/10.1093/bioin-formatics/bts460. Pritchard JK, Stephens P, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59. Soriano JM, Villegas D, Aranzana MJ, García del Moral LF, Royo C. Genetic structure of modern durum wheat cultivars and Mediterranean landraces matches with their agronomic performance. PLoS One. 2016;11:e0160983. Oliveira HR, Campana MG, Jones H, Hunt HV, Leigh F. Tetraploid wheat landraces in the mediterranean basin: taxonomy, evolution and genetic diversity. PLoS One. 2012;7:1–13. Sahri A, Chentoufi L, Arbaoui M, Ardisson M, Roumet P, Belqadi L, Birouk A, Roumet P, Muller MH. Towards a comprehensive characterization of durum wheat landraces in Moroccan traditional agrosystems: analysing genetic diversity in the light of geography, farmers’ taxonomy and tetraploid wheat domestication history. BMC Evol Biol. 2014;14:264. Chentoufi L, Sahri A, Arbaoui M, Belqadi L, Birouk A, Roumet P, Muller MH. Diversité agro-morphologique et gestion variétale par les agriculteurs du blé dur (Triticum turgidum ssp. durum) dans le Pré-Rif marocain. Rev Mar Sci Agron Vét. 2014;2:30–8. Mengistu DK, Kiros AY, Pè ME. Phenotypic diversity in Ethiopian durum wheat (Triticum turgidum var. durum) landraces. Crop J. 2015;3:190–9. https://doi.org/10.1016/j.cj.2015.04.003. Al Khanjari S, Filatenko AA, Hammer K, Buerkert A. Morphological spike diversity of Omani wheat. Genet Resour Crop Ev. 2008;55:1185–95. Slim A, Ayed S, Slama AO, Robbana C, Jaime AT, Slim-Amara H. Morphological diversity of some qualitative traits in Tetraploid wheat landrace populations collected in the south of Tunisia. Int J Plant Breed. 2011;5:67–70. Ayed S, Slim AH. Distribution and phenotypic variability aspects of some quantitiative traits among durum wheat accessiions. Afr Crop Sci J. 2008;16:4. Wang LX, Jun QIU, Chang LF, Liu LH, HB LI, Pang BS, Zhao CP. Assessment of wheat variety distinctness using SSR markers. J Integr Agric. 2015;14:1923–35. Bezançon G, Pham JL, Deu M, Vigouroux Y, Sagnard F, Mariac C, Kapran I, Mamadou A, Gérard B, Ndjeunga J, Chantereau J. Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum (L.) R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genet Resour Crop Ev. 2009;56:223–36. Jaradat AA. Wheat landraces: a mini review. Emir J Food Agr. 2013;25:20–9. Abdel-Ghani AH. Genetic diversity and Population Structure of Jordanian Durum Wheat (Triticum turgidum L. subsp durum) Landraces as Revealed by RAPD Markers. JJAS. 2013;9:369–82. Baloch FB, Alsaleh A, Saenz de Miera LE, Hatipoglu R, Çiftçi V, Karakoy T, Yıldız M, Ozkan H. DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochem. Syst. Ecol. 2015;61:244–52. Fayaz F, Sarbarzeh MA, Talebi R, Azadi A. Genetic diversity and molecular characterization of Iranian durum wheat landraces (Triticum turgidum durum (Desf.) Husn.) using DArT markers. Biochem Genet. 2018;57:98–116. Yan H, Zhang B, Zhang Y, Chen X, Xiong H, Matsui T, Tian X. High temperature induced glume closure resulted in lower fertility in hybrid rice seed production. Front Plant Sci. 2017;7:1960. Gautier A, Marcel TC, Confais J, Crane C, Kema G, Suffert F, Walker AS. Development of a rapid multiplex SSR genotyping method to study populations of the fungal plant pathogen Zymoseptoria tritici. BMC Res Notes. 2014;7:373. Valiere N. Gimlet: a computer program for analyzing genetic individual identification data. Mol Ecol Notes. 2002;2:377–9. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. http://www.R-project.org/. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germoplasm analysis. Mol Breed. 1996;2:225–38. Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:9 http://palaeoelectronica.org/2001_1/past/issue1_01.htm. Earl DA, von Holdt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359–61 http://taylor0.biology.ucla.edu/structureHarvester/. Bruvo R, Michiels NK, D’Souza TG, Schulenburg H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol. 2004;13:2101–6. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–20.