Morphological and microsatellite DNA diversity of Djallonké sheep in Guinea-Bissau

Guiguigbaza‐Kossigan Dayo1, Isidore Houaga1, Martin Bienvenu Somda1, Awa Linguelegue1, Mamadou Ira1, Maurice Konkobo1, Djassi Bacar2, Gomes Joao2, Mamadou Sangaré1, Bernardo Cassama2, Chia Valentine Yapi-Gnaore1
1Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, 01 BP 454, Burkina Faso
2Direction Générale de l'Elevage (DGE), BP 26, Bissau, Guinea-Bissau

Tóm tắt

AbstractBackgroundThe present study aimed at characterizing the Djallonké Sheep (DS), the only local sheep breed raised in Guinea-Bissau. A total of 200 animals were sampled from four regions (Bafatá, Gabú, Oio and Cacheu) and described using 7 visual criteria and 8 measurements. These parameters have been studied by principal components analysis. The genetic diversity and population structure of 92 unrelated animals were studied using 12 microsatellite markers.ResultsThe values of quantitative characters in the Bafatá region were significantly higher than those obtained in the other three regions. A phenotypic diversity of the DS population was observed and three genetic types distinguished: animals with “large traits” in the region of Bafatá, animals with “intermediate traits” in the regions of Gabú and Oio and animals with “small traits” in the Cacheu region. The hair coat colors are dominated by the white color, the shape of the facial head profile is mainly convex and the ears “erected horizontally”. Most of the morphobiometric characteristics were significantly influenced by the “region” and “sex of animals”.The average Polymorphism Information Content (PIC) of 0.65 ± 0.11 supports the use of markers in genetic characterization. Gabú subpopulation had the highest genetic diversity measures (He = 0.716 ± 0.089) while Cacheu DS subpopulation presented the smallest (He = 0.651 ± 0.157). Only Gabú and Bafatá subpopulations presented significant heterozygote deficiency across all loci indicating possible significant inbreeding. Mean values forFIT,FST, FISandGSTstatistics across all loci were 0.09, 0.029, 0.063 and 0.043 respectively. The overall genetic differentiation observed between the four DS subpopulations studied was low. Bafatá and Gabú are the most closely related subpopulations (DS = 0.04, genetic identity = 0.96) while Bafatá and Cacheu were the most genetically distant subpopulations (DS = 0.14, genetic identity = 0.87). Using Bayesian approach, the number of K groups that best fit the data is detected between 2 and 3, which is consistent with the morphological analysis and the factorial analysis of correspondence.ConclusionsThe molecular results on DS population of Guinea-Bissau confirmed the ones obtained with morphological analysis. The three genetic types observed phenotypically might be due to a combination of the agro-ecological differences and the management of breeding rather than genetic factors.

Từ khóa


Tài liệu tham khảo

Herrero M, Havlik P, Mcintire J, Palazzo A, Valin H. L’avenir de l’élevage africain : Réaliser le potentiel de l’élevage pour la sécurité alimentaire, la réduction de la pauvreté et la protection de l’environnement en Afrique sub-saharienne. Genèse: Bureau du représentant spécial des Nations Unies pour la sécurité alimentaire et nutritionnelle et du Coordonnateur du système des Nations Unies contre la grippe (UNSIC); 2014. p. 118.

Akakpo K, Lero P, Mendes D, Silva BV. Guinée-Bissau : Résultats de l’enquête approfondie sur la sécurité alimentaire et la vulnérabilité des ménages ruraux (rapport final). Rome: Programme Alimentaire Mondial, Service de l’Analyse de la Sécurité Alimentaire (VAM); 2011. p. 80. https://reliefweb.int/sites/reliefweb.int/files/resources/Rapport_complet_77.pdf

DGE. Lettre de Politique de Développement de l’Elevage de la Guinée-Bissau; 2010. p. 57.

Correia F. Revue des filières bétail/viande et lait et des politiques qui les influencent en Guinée-Bissau. FAO. Editeurs : Niang M, Salla A, Bedane B., Rome : FAO et CEDEAO. 2016. 52. Disponible sur http://www.fao.org/3/a-i5267f.pdf

Ira M, Dayo G-K, Sangaré M, Djassi B, Gomes J, Cassama B, et al. Etat des lieux de la caractérisation des ressources génétiques animales et aquacoles en Guinée-Bissau et perspectives de valorisation. Int J Adv Res. 2018;6(12):12–23. https://doi.org/10.21474/IJAR01/8109.

FAO. Plan d’action mondial pour les ressources zoogénétiques et la déclaration d’Interlaken. Rome: FAO; 2007. p. 52. http://www.fao.org/3/a1404f/a1404f00.pdf

FAO. Phenotypic characterization of animal genetic resources. Rome: FAO Animal Production and Health Guidelines No. 11; 2012. p. 142.

DGE. Rapport national sur l’état des ressources génétiques de l’élevage. Bissau: Ministère de 486 l’agriculture, des forêts, de la chasse et de l’élevage; 2002. p. 42.

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–20. https://doi.org/10.1111/j.1365-294X.2005.02553.x.

OIE. Rapport d’évaluation PVS/OIE de la Guinée - Bissau, Version I; 2008. p. 124. http://www.oie.int/fileadmin/Home/eng/Support_to_OIE_Members/docs/pdf/Guinee-Bissau_OIE-PVS_300708.pdf

MADR. Guides sur les bonnes pratiques en matière de gestion de pâturages et de corridors de transhumance en Guinée-Bissau (GSPCT), Guinée-Bissau, vol. 16; 2013. Disponible sur http://www.gw.undp.org/content/dam/guinea_bissau/docs/environment/UNDP_GW_Bonnes_Pratiques_gestion_paturages.pdf

DGE. Rapport de synthèse du recensement national de l’élevage en Guinée-Bissau (rapport de synthèse). Guinée-Bissau; 2009. p. 30.

N’goran KE, Kouadja GS, Kouassi NC, Loukou NE, Eka JY, Dayo G-K, et al. Primary morphological characterization of west African dwarf (Djallonké) ewes from Côte d’Ivoire based on qualitative and quantitative traits. Int J Genet Mol Biol. 2019;11(2):16–28. https://doi.org/10.5897/IJGMB2019.0170.

Ndiaye B. Caractérisation phénotypique et génétique du mouton Peul-peul du Sénégal, vol. 201947. Dakar: Thèse de Doctorat, Université Cheikh Anta Diop de Dakar; 2020. p. 132.

Dayo G-K, Alfa E, Talaki E, Soedji K, Sylla S, Dao B. Caractérisation phénotypique du mouton Vogan du Togo et relation avec le mouton Djallonké et le mouton sahélien. Animal Genetic Resources. 2015;56:63–78. https://doi.org/10.1017/S207863361500003X.

Baenyi P, Meutchieye F, Ayagirwe BR, Bwihangane BA, Karume K, Mushagalusa NG, et al. Biodiversity of indigenous Djallonké sheep (Ovis aries) in Sudano Guinean region in Cameroon. Genet Biodiversity J. 2018;2(2):1–10.

Traore A, Tamboura H, Kabore A, Yameogo N, Bayala B, Zare I. Caractérisation morphologique des petits ruminants (ovins et caprins) de race locale “Mossi” au Burkina Faso. AGRI. 2006;39:39–50. https://doi.org/10.1017/S1014233900002121.

Sangaré M. Synthèse des résultats acquis sur l’élevage des petits ruminants dans les systèmes de production animale d’Afrique de l’ouest. In: CIRDES éditions. Document de synthèse du Programme concerté de recherche-développement sur l’élevage en Afrique de l’ouest. Bobo-Dioulasso; 2005. p. 163.

Gueye A. Moutons et Chèvres du Sénégal : Caractérisation morphobiométrique et typage sanguin. Thèse de docteur vétérinaire. Sénégal: Université Cheikh Anta Diop de Dakar; 1997. p. 78.

Birteeb PT, Peters SO, Ozoje MO. Analysis of the body structure of Djallonké sheep using a multideterminant approach. Animal Genet Resources. 2014;54:65–72. https://doi.org/10.1017/S2078633614000125.

Asamoah-Boaheng M, Sam KE. Morphological characterization of breeds of sheep: a discriminant analysis approach. SpringerPlus. 2016;5(1):69. https://doi.org/10.1186/s40064-016-1669-8.

Hadzi YN. Les populations de bétail présentes au Togo. Animal Genetic Resources. 1996;17:35–49. https://doi.org/10.1017/S1014233900000560.

Epstein H. The origin of the domestic animals of Africa, vol. 1. New York: Africana Publishing Corporation; 1971.

Lebbie SHB, Ramsay K. A perspective on conservation and management of small ruminant genetic resources in the sub-Saharan Africa. Small Rumin Res. 1999;34(3):231–47. https://doi.org/10.1016/S0921-4488(99)00076-0.

Gbangboche A, Hornick J-L, Adamou-N’diaye M, Edorh AP, Farnir F, Abiola F, et al. Caractérisation et maîtrise des paramètres de la reproduction et de la croissance des ovins Djallonké (Ovis aries). Ann Med Vet. 2005;149:148–60.

Agaviezor BO, Peters SO, Adefenwa MA, Yakubu A, Adebambo OA, Ozoje MO, et al. Morphological and microsatellite DNA diversity of Nigerian indigenous sheep. J Animal Sci Biotechnol. 2012;3(1):38. https://doi.org/10.1186/2049-1891-3-38.

Melesse A, Banerjee S, Lakew A, Mersha F, Hailemariam F, Tsegaye S, et al. Morphological characterization of indigenous sheep in southern regional state, Ethiopia. Animal Genet Resources. 2013;52:39–50. https://doi.org/10.1017/s2078633612000513.

Ndiaye B, Diouf MN, Ciss M, Wane M, Diop M, Sembène M. Morphologie et pratiques d’élevage du mouton Peul-peul du Sénégal. Int J Adv Res. 2018;6(5):727–38. https://doi.org/10.21474/IJAR01/7089.

Wafula PO, Jianlin H, Sangare N, Sowe JM, Coly R, Diallo B, et al. Genetic characterization of west African Djallonké sheep using microsatellite markers. Turin: The Role of Biotechnology, Villa Gualino; 2005.

Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89(3):583–90. https://doi.org/10.1093/genetics/89.3.583.

FAO-AQUASTAT. Guinée-Bissau. In : L’irrigation en Afrique en chiffres, enquêtes. Rome; 2005. p. 279–86. http://www.fao.org/3/a-a0232f.pdf

FAO. Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines. No. 9. Rome. 2011.

R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. https://www.R-project.org/

Husson F, Josse J, Le S, Mazet J. Facto-MineR multivariate exploratory data analysis and data mining with R. R package version 1.26. 2014. http://factominer.free.fr/factomethods/index_fr.html

Weir BS, Cockerham C. 1984. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38(6):1358–70. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x.

Goudet J. FSTAT. A program to estimate and test gene diversities and fixation indices (version 2.9.4). 2003. Available on: http://www2.unil.ch/popgen/softwares/fstat.htm.

Petit RJ, El Mousadik A, Pons O. Identifying populations for conservation on the basis of genetic markers. Conserv Biol. 1998;12(4):844–55. https://doi.org/10.1046/j.1523-1739.1998.96489.x.

Rousset F. Genepop'007: a complete reimplementation of the Genepop software for windows and Linux. Mol Ecol Resources. 2008;8(1):103–6. https://doi.org/10.1111/j.1471-8286.2007.01931.x.

Raymond M, Rousset F. GENEPOP. Population genetics software and ecumenicism, http:/wbiomed.curtin.edu.au/genepop/. J Hered. 1995;86(3):248–9. https://doi.org/10.1093/oxfordjournals.jhered.a111573.

Gutiérrez JP, Royo LJ, Álvarez I, Goyache F. MolKin v2.0: a computer program for genetic analysis of populations using molecular coancestry information. J Hered. 2005;96(6):718–21. https://doi.org/10.1093/jhered/esi118.

Yeh FC, Yang R-C, Boyle T. POPGENE Version 1.31. Microsoft windows-based freeware for population genetics analysis. 1999. ftp://ftp.microsoft.com/Softlib/MSLFILES/HPGL.EXE.

Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.698. Seattle: Department of Genome Sciences, University of Washington; 2009.

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59. https://doi.org/10.1093/genetics/155.2.945.

Earl DA, Vonholdt BM. STRUCTURE HARVESTER: a program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4(2):359–61. https://doi.org/10.1007/s12686-011-9548-7.