Morphological adaptation of sheep’s rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis

Liping Xu1, Yue Wang1, Junhua Liu1, Weiyun Zhu1, Shengyong Mao1
1Department of Animal Science and Technology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Steele M, Dionissopoulos L, AlZahal O, Doelman J, McBride B. Rumen epithelial adaptation to ruminal acidosis in lactating cattle involves the coordinated expression of insulin-like growth factor-binding proteins and a cholesterolgenic enzyme. J Dairy Sci. 2012;95:318–27.

Sutton J, Dhanoa M, Morant S, France J, Napper D, Schuller E. Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets. J Dairy Sci. 2003;86:3620–33.

Penner G, Taniguchi M, Guan L, Beauchemin K, Oba M. Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue. J Dairy Sci. 2009;92:2767–81.

Goodlad RA. Some effects of diet on the mitotic index and the cell cycle of the ruminal epithelium of sheep. Q J Exp Physiol. 1981;66:487–99.

Steele MA, Croom J, Kahler M, AlZahal O, Hook SE, Plaizier K, et al. Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:1515–23.

Odongo N, AlZahal O, Lindinger M, Duffield T, Valdes E, Terrell S, et al. Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs. J Anim Sci. 2006;84:447–55.

Etschmann B, Suplie A, Martens H. Change of ruminal sodium transport in sheep during dietary adaptation. Arch Anim Nutr. 2009;63:26–38.

Penner G, Steele M, Aschenbach J, McBride B. Ruminant nutrition symposium: molecular adaptation of ruminal epithelia to highly fermentable diets. J Anim Sci. 2011;89:1108–19.

Steele M, Schiestel C, AlZahal O, Dionissopoulos L, Laarman A, Matthews J, et al. The periparturient period is associated with structural and transcriptomic adaptations of rumen papillae in dairy cattle. J Dairy Sci. 2015;98:2583–95.

Dirksen G, Liebich H, Mayer E. Adaptive changes of the ruminal mucosa and their functional and clinical significance. Bovine Pract. 1985;20:116–20.

Baldwin R. The proliferative actions of insulin, insulin-like growth factor-I, epidermal growth factor, butyrate and propionate on ruminal epithelial cells in vitro. Small Rumin Res. 1999;32:261–8.

Mentschel J, Leiser R, Mulling C, Pfarrer C, Claus R. Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis. Archiv fur Tierernahrung. 2001;55:85–102.

Bannink A, France J, Lopez S, Gerrits W, Kebreab E, Tamminga S, et al. Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. AnimFeed Sci Technol. 2008;143:3–26.

Reynolds C, Dürst B, Lupoli B, Humphries D, Beever D. Visceral tissue mass and rumen volume in dairy cows during the transition from late gestation to early lactation. J Dairy Sci. 2004;87:961–71.

Gui H, Shen Z. Concentrate diet modulation of ruminal genes involved in cell proliferation and apoptosis is related to combined effects of short-chain fatty acid and pH in rumen of goats. J Dairy Sci. 2016;99:6627–38.

Qin W. Determination of rumen volatile fatty acids by means of gas chromatography. J Nanjing Agric Coll. 1982;4:110–6.

Holle S, Birtles M. An immunocytochemical method for studying patterns of cell proliferation in the wool follicle. N Z Vet J. 1990;38:89–93.

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9.

Liu JH, Xu TT, Liu YJ, Zhu WY, Mao SY. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. Am J Physiol Regul Integr Comp Physiol. 2013;305:232–41.

Lu J, Zhao H, Xu J, Zhang L, Yan L, Shen Z. Elevated cyclin D1 expression is governed by plasma IGF-1 through Ras/Raf/MEK/ERK pathway in rumen epithelium of goats supplying a high metabolizable energy diet. J Anim Physiol Anim Nutr (Berl). 2013;97:1170–8.

Mao SY, Huo WJ, Zhu WY. Microbiome–metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environ Microbiol. 2016;18:525–41.

Shen Z, Seyfert HM, Lohrke B, Schneider F, Zitnan R, Chudy A, et al. An energy-rich diet causes rumen papillae proliferation associated with more IGF type 1 receptors and increased plasma IGF-1 concentrations in young goats. J Nutr. 2004;134:11–7.

Brownlee A. The development of rumen papillae in cattle fed on different diets. Br Vet J. 1956;112:369–75.

Weiss B. The relationship between the acidity of the rumen contents and the proliferation status of the rumen mucosa in cattle. Berl Munch Tierarztl Wochenschr. 1994;107:73–8.

Chen J, Chen W, Shen Z, Su Y. Effects of pentagastrin and IGF-1 on DNA synthesis of rumen epithelial cells of dairy cow and neonatal calf. J Anim Feed Sci. 2004;13:289–92.

Galfi P, Neogrády S, Gäbel G. Na+/H+ exchange in primary, secondary and n-butyrate-treated cultures of ruminal epithelial cells: short communication. Acta Vet Hung. 2002;50:211–5.

Schurmann, B: Functional adaptation of the ruminal epithelium. https://ecommons.usask.ca/handle/10388/ETD-2013-12-1381 (2014). Accessed 20 Jan 2014.

Dieho K, Bannink A, Geurts I, Schonewille J, Gort G, Dijkstra J. Morphological adaptation of rumen papillae during the dry period and early lactation as affected by rate of increase of concentrate allowance. J Dairy Sci. 2016;99:2339–52.

Steele MA, Penner GB, Chaucheyras-Durand F, Guan LL. Development and physiology of the rumen and the lower gut: targets for improving gut health. J Dairy Sci. 2016;99:4955–66.

Liebich H, Dirksen G, Arbel A, Dori S, Mayer E. Feed-dependent changes in the rumen mucosa of high-producing cows from the dry period to eight weeks post partum. Zentralbl Veterinarmed A. 1987;34:661.

Martens H, Rabbani I, Shen Z, Stumpff F, Deiner C. Changes in rumen absorption processes during transition. Anim Feed Sci Technol. 2012;172:95–102.

Hinders R, Owen F. Relation of ruminal parakeratosis development to volatile fatty acid absorption. J Dairy Sci. 1965;48:1069–73.

Gaebel G, Martens H, Suendermann M, Galfi P. The effect of diet, intraruminal pH and osmolarity on sodium, chloride and magnesium absorption from the temporarily isolated and washed reticulo-rumen of sheep. Q J Exp Physiol. 1987;72:501–11.

Norbury C, Nurse P. Animal cell cycles and their control. Annu Rev Biochem. 1992;61:441–68.

Sherr CJ. Mammalian G1 cyclins. Cell. 1993;73:1059–65.

Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36:131–49.

Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol. 1999;19:2690–8.

Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol. 1995;15:2612–24.

Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, et al. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science. 1992;257:1689–94.

Clurman BE, Sheaff RJ, Thress K, Groudine M, Roberts JM. Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev. 1996;10:1979–90.

Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999;19:1720–30.

Bondzio A, Gabler C, Badewien-Rentzsch B, Schulze P, Martens H, Einspanier R. Identification of differentially expressed proteins in ruminal epithelium in response to a concentrate-supplemented diet. Am J Physiol Gastrointest Liver Physiol. 2011;301:G260–8.

Majdoub-Mathlouthi L, Said B, Say A, Kraiem K. Effect of concentrate level and slaughter body weight on growth performances, carcass traits and meat quality of Barbarine lambs fed oat hay based diet. Meat Sci. 2013;93:557–63.

Osorio A, Mendoza G, Plata F, Martínez J, Vargas L, Ortega G. A simulation model to predict body weight gain in lambs fed high-grain diets. Small Rumin Res. 2015;123:246–50.

Sakata T, Tamate H. Rumen epithelial cell proliferation accelerated by rapid increase in intraruminal butyrate. J Dairy Sci. 1978;61:1109–13.

Shen ZM, Martens H, Schweigel-Rontgen M. Na+ transport across rumen epithelium of hay-fed sheep is acutely stimulated by the peptide IGF-1 in vitro. Exp Physiol. 2012;97:497–505.

Zitnan R, Kuhla S, Sanftleben P, Bilska A, Schneider F, Zupcanova M, et al. Diet induced ruminal papillae development in neonatal calves not correlating with rumen butyrate. Vet Med (Praha) 2005. 50:472.

Kaulfuss S, Burfeind P, Gaedcke J, Scharf JG. Dual silencing of insulin-like growth factor-I receptor and epidermal growth factor receptor in colorectal cancer cells is associated with decreased proliferation and enhanced apoptosis. Mol Cancer Ther. 2009;8:821–33.

Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23:824–54.

Albiston AL, Taylor RG, Herington AC, Beveridge DJ, Fuller PJ. Divergent ileal IGF-I and IGFBP-3 gene expression after small bowel resection: a novel mechanism to amplify IGF action. Mol Cell Endocrinol. 1992;83:R17–20.

Baxter RC. Signalling pathways involved in antiproliferative effects of IGFBP-3: a review. Mol Pathol. 2001;54:145–8.

Sakata T, Yajima T. Influence of short chain fatty acids on the epithelial cell division of digestive tract. QJ Exp Physiol. 1984;69:639–48.

Blottière HM, Buecher B, Galmiche J-P, Cherbut C. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc Nutr Soc. 2003;62:101–6.

Ploger S, Stumpff F, Penner GB, Schulzke JD, Gabel G, Martens H, et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci. 2012;1258:52–9.

Noziere P, Martin C, Remond D, Kristensen NB, Bernard R, Doreau M. Effect of composition of ruminally-infused short-chain fatty acids on net fluxes of nutrients across portal-drained viscera in underfed ewes. Br J Nutr. 2000;83:521–31.

Shen Z, Kuhla S, Zitnan R, Seyfert H-M, Schneider F, Hagemeister H, et al. Intraruminal infusion of n-butyric acid induces an increase of ruminal papillae size independent of IGF-1 system in castrated bulls. Arch Anim Nutr. 2005;59:213–25.

Galfi P, Gabel G, Martens H. Influences of extracellular matrix components on the growth and differentiation of ruminal epithelial cells in primary culture. Res Vet Sci. 1993;54:102–9.

Collard TJ, Guy M, Butt AJ, Perks CM, Holly JM, Paraskeva C, et al. Transcriptional upregulation of the insulin-like growth factor binding protein IGFBP-3 by sodium butyrate increases IGF-independent apoptosis in human colonic adenoma-derived epithelial cells. Carcinogenesis. 2003;24:393–401.

Sanderson IR. Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium. J Nutr. 2004;134:2450S–4S.

Feed Database in China. Table of feed composition and nutritive value in China. 22nd ed. Beijing: China Feed; 2011.