Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yasaka T, Mantich NM, Boxer LA, Baehner RL: Functions of human monocyte and lymphocyte subsets obtained by countercurrent centrifugal elutriation: differing functional capacities of human monocyte subsets. J Immunol 1981, 127: 1515–1518.
Kurihara T, Warr G, Loy J, Bravo R: Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med 1997, 186: 1757–1762.
Nahrendorf M, et al.: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007, 204: 3037–3047. 10.1084/jem.20070885
Ingersoll MA, Platt AM, Potteaux S, Randolph GJ: Monocyte trafficking in acute and chronic inflammation. Trends Immunol 2011, 32: 470–477. 10.1016/j.it.2011.05.001
Afiune Neto A, Mansur Ade P, Avakian SD, Gomes EP, Ramires JA: [Monocytosis is an independent risk marker for coronary artery disease]. Arquivos brasileiros de cardiologia 2006, 86: 240–244. S0066–782X2006000300013
Maekawa Y, et al.: Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction: a possible role for left ventricular remodeling. J Am Coll Cardiol 2002, 39: 241–246.
Ganda A, et al.: Mild Renal Dysfunction and Metabolites Tied to Low HDL Cholesterol Are Associated With Monocytosis and Atherosclerosis. Circulation 2013, 127: 988–996. 10.1161/CIRCULATIONAHA.112.000682
Chapman CM, Beilby JP, McQuillan BM, Thompson PL, Hung J: Monocyte count, but not C-reactive protein or interleukin-6, is an independent risk marker for subclinical carotid atherosclerosis. Stroke 2004, 35: 1619–1624. 10.1161/01.STR.0000130857.19423.ad
Tani S, et al.: Association of leukocyte subtype counts with coronary atherosclerotic regression following pravastatin treatment. Am J Cardiol 2009, 104: 464–469. 10.1016/j.amjcard.2009.04.009
Hurst NP, Nuki G: Evidence for defect of complement-mediated phagocytosis by monocytes from patients with rheumatoid arthritis and cutaneous vasculitis. Br Med J (Clin Res Ed) 1981, 282: 2081–2083.
Schechter GP, Wahl LM, Oppenheim JJ: Suppressor monocytes in human disease: a review. Adv Exp Med Biol 1979, 121B: 283–298.
Clarkson SB, Ory PA: CD16. Developmentally regulated IgG Fc receptors on cultured human monocytes. J Exp Med 1988, 167: 408–420.
Passlick B, Flieger D, Ziegler-Heitbrock HW: Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989, 74: 2527–2534.
Palframan RT, et al.: Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 2001, 194: 1361–1373.
Si Y, Tsou CL, Croft K, Charo IF: CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice. J Clin Investig 120: 1192–1203.
Serbina NV, Jia T, Hohl TM, Pamer EG: Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 2008, 26: 421–452. 10.1146/annurev.immunol.26.021607.090326
Barbalat R, Lau L, Locksley RM, Barton GM: Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol 2009, 10: 1200–1207. 10.1038/ni.1792
Audoy-Remus J, et al.: Rod-Shaped monocytes patrol the brain vasculature and give rise to perivascular macrophages under the influence of proinflammatory cytokines and angiopoietin-2. J Neurosci 2008, 28: 10187–10199. 10.1523/JNEUROSCI.3510–08.2008
Auffray C, et al.: Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007, 317: 666–670. 10.1126/science.1142883
Randolph GJ: Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis. Curr Opin Lipidol 2008, 19: 462–468. 10.1097/MOL.0b013e32830d5f09
Qu C, et al.: Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 2004, 200: 1231–124. 10.1084/jem.20032152
Geissmann F, Jung S, Littman DR: Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19: 71–82.
Grip O, Bredberg A, Lindgren S, Henriksson G: Increased subpopulations of CD16(+) and CD56(+) blood monocytes in patients with active Crohn's disease. Inflamm Bowel Dis 2007, 13: 566–572. 10.1002/ibd.20025
Shantsila E, et al.: Immunophenotypic characterization of human monocyte subsets: possible implications for cardiovascular disease pathophysiology. J Thromb Haemost 2011, 9: 1056–1066. 10.1111/j.1538–7836.2011.04244.x
Rothe G, et al.: Peripheral blood mononuclear phagocyte subpopulations as cellular markers in hypercholesterolemia. Arterioscler Thromb Vasc Biol 1996, 16: 1437–1447.
Kashiwagi M, et al.: Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis 2010, 212: 171–176. 10.1016/j.atherosclerosis.2010.05.004
Tsujioka H, et al.: Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 2009, 54: 130–138. 10.1016/j.jacc.2009.04.021
Rogacev KS, et al.: Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur Heart J 2010, 31: 369–376. 10.1093/eurheartj/ehp308
Tanaka M, et al.: Surface phenotype analysis of CD16+ monocytes from leukapheresis collections for peripheral blood progenitors. Clin Exp Immunol 1999, 116: 57–61.
Ancuta P, et al.: Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Exp Med 2003, 197: 1701–1707.
Ziegler-Heitbrock L, et al.: Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116: e74–80. 10.1182/blood-2010–02–258558
Jones KL, Maguire JJ, Davenport AP: Chemokine receptor CCR5: from AIDS to atherosclerosis. Br J pharmacol 2011, 162: 1453–1469. 10.1111/j.1476–5381.2010.01147.x
Xu H, Manivannan A, Crane I, Dawson R, Liversidge J: Critical but divergent roles for CD62L and CD44 in directing blood monocyte trafficking in vivo during inflammation. Blood 2008, 112: 1166–1174. 10.1182/blood-2007–06–098327
Cros J, et al.: Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010, 33: 375–386. 10.1016/j.immuni.2010.08.012
Wong KL, et al.: Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 2011, 118: e16-e31. 10.1182/blood-2010–12–326355
Sunderkotter C, et al.: Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004, 172: 4410–4417.
Hristov M, Weber C: Differential role of monocyte subsets in atherosclerosis. Thromb Haemost 2011, 106: 757–762. 10.1160/TH11–07–0500
Yona S, et al.: Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013, 38: 79–91.
Zawada AM, et al.: Monocyte heterogeneity in human cardiovascular disease. Immunobiology 2012, 217: 1273–1284. 10.1016/j.imbio.2012.07.001
Arnold L, et al.: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007, 204: 1057–1069. 10.1084/jem.20070075
Saederup N, et al.: Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PloS one 2010, 5: e13693.
Zigmond E, et al.: Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 2012, 37: 1076–1090. 10.1016/j.immuni.2012.08.026
Rivollier A, He J, Kole A, Valatas V, Kelsall BL: Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med 2012, 209: 139–155. 10.1084/jem.20101387
Jenkins SJ, et al.: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 2011, 332: 1284–1288. 10.1126/science.1204351
Egawa M, et al.: Inflammatory Monocytes Recruited to Allergic Skin Acquire an Anti-inflammatory M2 Phenotype via Basophil-Derived Interleukin-4. Immunity 2013,38(3):570–580. 10.1016/j.immuni.2012.11.014
Zhang D, et al.: Severe hyperhomocysteinemia promotes bone marrow-derived and resident inflammatory monocyte differentiation and atherosclerosis in LDLr/CBS-deficient mice. Circ Res 2012, 111: 37–49. 10.1161/CIRCRESAHA.112.269472
Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P: Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998, 394: 200–203. 10.1038/28204
Tedgui A, Bernard C: Cytokines, immuno-inflammatory response and atherosclerosis. Eur Cytokine Netw 1994, 5: 263–270.
Hakkinen T, Karkola K, Yla-Herttuala S: Macrophages, smooth muscle cells, endothelial cells, and T-cells express CD40 and CD40L in fatty streaks and more advanced human atherosclerotic lesions. Colocalization with epitopes of oxidized low-density lipoprotein, scavenger receptor, and CD16 (Fc gammaRIII). Virchows Archiv 2000, 437: 396–405.
Lievens D, et al.: Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010, 116: 4317–4327. 10.1182/blood-2010–01–261206
Lutgens E, et al.: Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 2010, 207: 391–404. 10.1084/jem.20091293
Mosig S, et al.: Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+ CD16+ monocytes in detoxification of oxidized LDL. FASEB J 2009, 23: 866–874. 10.1096/fj.08–118240
Phipps RP: Atherosclerosis: the emerging role of inflammation and the CD40-CD40 ligand system. Proc Natl Acad Sci U S A 2000, 97: 6930–6932.
Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB: Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 2000, 6: 114. 10.1038/72162
Gelderblom M, et al.: Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 2009, 40: 1849–1857.
Jin R, Yang G, Li G: Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010, 87: 779–789.
Kim E, et al.: CD36 in the periphery and brain synergizes in stroke injury in hyperlipidemia. Ann Neurol 2012, 71: 753–764.
King IL, Dickendesher TL, Segal BM: Circulating Ly-6C + myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 2009, 113: 3190–3197.
Getts DR, et al.: Ly6c + “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med 2008, 205: 2319–2337.
Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV: Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 2007, 38: 1345–1353.