Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases

Biomarker Research - Tập 2 Số 1 - 2014
Jiyeon Yang1, Lixiao Zhang1, Caijia Yu1, Xiaofeng Yang1, Hong Wang1
1Department of Pharmacology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Temple University School of Medicine, Philadelphia, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yasaka T, Mantich NM, Boxer LA, Baehner RL: Functions of human monocyte and lymphocyte subsets obtained by countercurrent centrifugal elutriation: differing functional capacities of human monocyte subsets. J Immunol 1981, 127: 1515–1518.

Kurihara T, Warr G, Loy J, Bravo R: Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med 1997, 186: 1757–1762.

Nahrendorf M, et al.: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007, 204: 3037–3047. 10.1084/jem.20070885

Ingersoll MA, Platt AM, Potteaux S, Randolph GJ: Monocyte trafficking in acute and chronic inflammation. Trends Immunol 2011, 32: 470–477. 10.1016/j.it.2011.05.001

Meuret G, Bammert J, Hoffmann G: Kinetics of human monocytopoiesis. Blood 1974, 44: 801–816.

Afiune Neto A, Mansur Ade P, Avakian SD, Gomes EP, Ramires JA: [Monocytosis is an independent risk marker for coronary artery disease]. Arquivos brasileiros de cardiologia 2006, 86: 240–244. S0066–782X2006000300013

Maekawa Y, et al.: Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction: a possible role for left ventricular remodeling. J Am Coll Cardiol 2002, 39: 241–246.

Ganda A, et al.: Mild Renal Dysfunction and Metabolites Tied to Low HDL Cholesterol Are Associated With Monocytosis and Atherosclerosis. Circulation 2013, 127: 988–996. 10.1161/CIRCULATIONAHA.112.000682

Chapman CM, Beilby JP, McQuillan BM, Thompson PL, Hung J: Monocyte count, but not C-reactive protein or interleukin-6, is an independent risk marker for subclinical carotid atherosclerosis. Stroke 2004, 35: 1619–1624. 10.1161/01.STR.0000130857.19423.ad

Tani S, et al.: Association of leukocyte subtype counts with coronary atherosclerotic regression following pravastatin treatment. Am J Cardiol 2009, 104: 464–469. 10.1016/j.amjcard.2009.04.009

Hurst NP, Nuki G: Evidence for defect of complement-mediated phagocytosis by monocytes from patients with rheumatoid arthritis and cutaneous vasculitis. Br Med J (Clin Res Ed) 1981, 282: 2081–2083.

Schechter GP, Wahl LM, Oppenheim JJ: Suppressor monocytes in human disease: a review. Adv Exp Med Biol 1979, 121B: 283–298.

Clarkson SB, Ory PA: CD16. Developmentally regulated IgG Fc receptors on cultured human monocytes. J Exp Med 1988, 167: 408–420.

Passlick B, Flieger D, Ziegler-Heitbrock HW: Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989, 74: 2527–2534.

Palframan RT, et al.: Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 2001, 194: 1361–1373.

Si Y, Tsou CL, Croft K, Charo IF: CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice. J Clin Investig 120: 1192–1203.

Serbina NV, Jia T, Hohl TM, Pamer EG: Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 2008, 26: 421–452. 10.1146/annurev.immunol.26.021607.090326

Barbalat R, Lau L, Locksley RM, Barton GM: Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol 2009, 10: 1200–1207. 10.1038/ni.1792

Audoy-Remus J, et al.: Rod-Shaped monocytes patrol the brain vasculature and give rise to perivascular macrophages under the influence of proinflammatory cytokines and angiopoietin-2. J Neurosci 2008, 28: 10187–10199. 10.1523/JNEUROSCI.3510–08.2008

Auffray C, et al.: Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007, 317: 666–670. 10.1126/science.1142883

Randolph GJ: Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis. Curr Opin Lipidol 2008, 19: 462–468. 10.1097/MOL.0b013e32830d5f09

Qu C, et al.: Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 2004, 200: 1231–124. 10.1084/jem.20032152

Geissmann F, Jung S, Littman DR: Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19: 71–82.

Grip O, Bredberg A, Lindgren S, Henriksson G: Increased subpopulations of CD16(+) and CD56(+) blood monocytes in patients with active Crohn's disease. Inflamm Bowel Dis 2007, 13: 566–572. 10.1002/ibd.20025

Shantsila E, et al.: Immunophenotypic characterization of human monocyte subsets: possible implications for cardiovascular disease pathophysiology. J Thromb Haemost 2011, 9: 1056–1066. 10.1111/j.1538–7836.2011.04244.x

Rothe G, et al.: Peripheral blood mononuclear phagocyte subpopulations as cellular markers in hypercholesterolemia. Arterioscler Thromb Vasc Biol 1996, 16: 1437–1447.

Kashiwagi M, et al.: Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis 2010, 212: 171–176. 10.1016/j.atherosclerosis.2010.05.004

Tsujioka H, et al.: Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 2009, 54: 130–138. 10.1016/j.jacc.2009.04.021

Rogacev KS, et al.: Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur Heart J 2010, 31: 369–376. 10.1093/eurheartj/ehp308

Tanaka M, et al.: Surface phenotype analysis of CD16+ monocytes from leukapheresis collections for peripheral blood progenitors. Clin Exp Immunol 1999, 116: 57–61.

Ancuta P, et al.: Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Exp Med 2003, 197: 1701–1707.

Ziegler-Heitbrock L, et al.: Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116: e74–80. 10.1182/blood-2010–02–258558

Jones KL, Maguire JJ, Davenport AP: Chemokine receptor CCR5: from AIDS to atherosclerosis. Br J pharmacol 2011, 162: 1453–1469. 10.1111/j.1476–5381.2010.01147.x

Xu H, Manivannan A, Crane I, Dawson R, Liversidge J: Critical but divergent roles for CD62L and CD44 in directing blood monocyte trafficking in vivo during inflammation. Blood 2008, 112: 1166–1174. 10.1182/blood-2007–06–098327

Cros J, et al.: Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010, 33: 375–386. 10.1016/j.immuni.2010.08.012

Wong KL, et al.: Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 2011, 118: e16-e31. 10.1182/blood-2010–12–326355

Sunderkotter C, et al.: Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004, 172: 4410–4417.

Hristov M, Weber C: Differential role of monocyte subsets in atherosclerosis. Thromb Haemost 2011, 106: 757–762. 10.1160/TH11–07–0500

Yona S, et al.: Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013, 38: 79–91.

Zawada AM, et al.: Monocyte heterogeneity in human cardiovascular disease. Immunobiology 2012, 217: 1273–1284. 10.1016/j.imbio.2012.07.001

Arnold L, et al.: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007, 204: 1057–1069. 10.1084/jem.20070075

Saederup N, et al.: Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PloS one 2010, 5: e13693.

Zigmond E, et al.: Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 2012, 37: 1076–1090. 10.1016/j.immuni.2012.08.026

Rivollier A, He J, Kole A, Valatas V, Kelsall BL: Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med 2012, 209: 139–155. 10.1084/jem.20101387

Jenkins SJ, et al.: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 2011, 332: 1284–1288. 10.1126/science.1204351

Egawa M, et al.: Inflammatory Monocytes Recruited to Allergic Skin Acquire an Anti-inflammatory M2 Phenotype via Basophil-Derived Interleukin-4. Immunity 2013,38(3):570–580. 10.1016/j.immuni.2012.11.014

Zhang D, et al.: Severe hyperhomocysteinemia promotes bone marrow-derived and resident inflammatory monocyte differentiation and atherosclerosis in LDLr/CBS-deficient mice. Circ Res 2012, 111: 37–49. 10.1161/CIRCRESAHA.112.269472

Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P: Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998, 394: 200–203. 10.1038/28204

Tedgui A, Bernard C: Cytokines, immuno-inflammatory response and atherosclerosis. Eur Cytokine Netw 1994, 5: 263–270.

Hakkinen T, Karkola K, Yla-Herttuala S: Macrophages, smooth muscle cells, endothelial cells, and T-cells express CD40 and CD40L in fatty streaks and more advanced human atherosclerotic lesions. Colocalization with epitopes of oxidized low-density lipoprotein, scavenger receptor, and CD16 (Fc gammaRIII). Virchows Archiv 2000, 437: 396–405.

Lievens D, et al.: Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010, 116: 4317–4327. 10.1182/blood-2010–01–261206

Lutgens E, et al.: Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 2010, 207: 391–404. 10.1084/jem.20091293

Mosig S, et al.: Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+ CD16+ monocytes in detoxification of oxidized LDL. FASEB J 2009, 23: 866–874. 10.1096/fj.08–118240

Phipps RP: Atherosclerosis: the emerging role of inflammation and the CD40-CD40 ligand system. Proc Natl Acad Sci U S A 2000, 97: 6930–6932.

Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB: Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 2000, 6: 114. 10.1038/72162

Gelderblom M, et al.: Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 2009, 40: 1849–1857.

Jin R, Yang G, Li G: Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010, 87: 779–789.

Kim E, et al.: CD36 in the periphery and brain synergizes in stroke injury in hyperlipidemia. Ann Neurol 2012, 71: 753–764.

King IL, Dickendesher TL, Segal BM: Circulating Ly-6C + myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 2009, 113: 3190–3197.

Getts DR, et al.: Ly6c + “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med 2008, 205: 2319–2337.

Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV: Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 2007, 38: 1345–1353.

Gliem M, et al.: Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol 2012, 71: 743–752.