Monitoring Parallel Robotic Cultivations with Online Multivariate Analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Neubauer, 2017, Editorial: Bioprocess Development in the era of digitalization, Eng. Life Sci., 17, 1140, 10.1002/elsc.201770113
Neubauer, 2011, Editorial: Towards faster bioprocess development, Biotechnol. J., 6, 902, 10.1002/biot.201000413
Islam, 2007, Framework for the Rapid Optimization of Soluble Protein Expression in Escherichia coli Combining Microscale Experiments and Statistical Experimental Design, Biotechnol. Prog., 23, 785, 10.1002/bp070059a
Glauche, 2016, Design of experiments-based high-throughput strategy for development and optimization of efficient cell disruption protocols, Eng. Life Sci., 17, 1166, 10.1002/elsc.201600030
Steffen, 2014, Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer, Microb. Cell Factories, 13, 46, 10.1186/1475-2859-13-46
Jorgensen, 2011, A challenging drug development process in the era of personalized medicine, Drug Discov. Today, 16, 891, 10.1016/j.drudis.2011.09.010
Paritala, 2017, Digital Manufacturing- Applications Past, Current, and Future Trends, Procedia Eng., 174, 982, 10.1016/j.proeng.2017.01.250
Nickel, 2016, Online bioprocess data generation, analysis, and optimization for parallel fed-batch fermentations in milliliter scale, Eng. Life Sci., 17, 1195, 10.1002/elsc.201600035
Kim, 2017, A Review of Cyber-Physical System Research Relevant to the Emerging IT Trends: Industry 4.0, IoT, Big Data, and Cloud Computing, J. Ind. Integr. Manag., 2, 1750011, 10.1142/S2424862217500117
Ghobakhloo, 2018, The future of manufacturing industry: A strategic roadmap toward Industry 4.0, J. Manuf. Technol. Manag., 29, 910, 10.1108/JMTM-02-2018-0057
Gani, R. (2006). Computer Aided Process and Product Engineering, Comput, WILEY-VCH Verlag GmbH & Co. KGaA.
Stephanopoulos, 2011, Process systems engineering: From Solvay to modern bio- and nanotechnology, Chem. Eng. Sci., 66, 4272, 10.1016/j.ces.2011.05.049
Narayanan, 2019, Bioprocessing in the Digital Age: The Role of Process Models, Biotechnol. J., 15, e1900172, 10.1002/biot.201900172
Abt, 2018, Model-based tools for optimal experiments in bioprocess engineering, Curr. Opin. Chem. Eng., 22, 244, 10.1016/j.coche.2018.11.007
Simen, 2016, Engineering E. coli for large-scale production – Strategies considering ATP expenses and transcriptional responses, Metab. Eng., 38, 73, 10.1016/j.ymben.2016.06.008
Sonnleitner, 1997, Bioprocess automation and bioprocess design, J. Biotechnol., 52, 175, 10.1016/S0168-1656(96)01642-2
Wilson, 2019, Identification of upstream culture conditions and harvest time parameters that affect host cell protein clearance, Biotechnol. Prog., 35, e2805, 10.1002/btpr.2805
Randek, 2017, On-line soft sensing in upstream bioprocessing, Crit. Rev. Biotechnol., 38, 106, 10.1080/07388551.2017.1312271
Kourti, 2006, Process Analytical Technology Beyond Real-Time Analyzers: The Role of Multivariate Analysis, Crit. Rev. Anal. Chem., 36, 257, 10.1080/10408340600969957
Hemmerich, 2018, Microbioreactor Systems for Accelerated Bioprocess Development, Biotechnol. J., 13, 1700141, 10.1002/biot.201700141
Haby, 2019, Integrated Robotic Mini Bioreactor Platform for Automated, Parallel Microbial Cultivation With Online Data Handling and Process Control, SLAS Technol. Transl. Life Sci. Innov., 24, 569
Anane, 2019, A model-based framework for parallel scale-down fed-batch cultivations in mini-bioreactors for accelerated phenotyping, Biotechnol. Bioeng., 116, 2906, 10.1002/bit.27116
Janzen, 2019, Implementation of a Fully Automated Microbial Cultivation Platform for Strain and Process Screening, Biotechnol. J., 14, e201800625, 10.1002/biot.201800625
Bournazou, 2016, Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities, Biotechnol. Bioeng., 114, 610, 10.1002/bit.26192
Barz, T., Sommer, A., Wilms, T., Neubauer, P., Bournazou, M.N.C., and Throughput, A. (2018, January 21–23). Adaptive optimal operation of a parallel robotic liquid handling station. Proceedings of the 9th Vienna Internacional Conference Mathematical Model, Vienna, Austria.
Hans, S., Gimpel, M., Glauche, F., Neubauer, P., Bournazou, M.N.C., and Gimpel, M. (2018). Automated Cell Treatment for Competence and Transformation of Escherichia coli in a High-Throughput Quasi-Turbidostat Using Microtiter Plates. Microorganisms, 6.
Sawatzki, A., Hans, S., Narayanan, H., Haby, B., Krausch, N., Sokolov, M., Glauche, F., Riedel, S.L., Neubauer, P., and Bournazou, M.N.C. (2018). Accelerated Bioprocess Development of Endopolygalacturonase-Production with Saccharomyces cerevisiae Using Multivariate Prediction in a 48 Mini-Bioreactor Automated Platform. Bioengineering, 5.
Nomikos, 1994, Monitoring batch processes using multiway principal component analysis, AIChE J., 40, 1361, 10.1002/aic.690400809
Sokolov, 2016, Robust factor selection in early cell culture process development for the production of a biosimilar monoclonal antibody, Biotechnol. Prog., 33, 181, 10.1002/btpr.2374
Undey, 2010, Applied advanced process analytics in biopharmaceutical manufacturing: Challenges and prospects in real-time monitoring and control, J. Process. Control., 20, 1009, 10.1016/j.jprocont.2010.05.008
Gunther, 2009, Pattern matching in batch bioprocesses—Comparisons across multiple products and operating conditions, Comput. Chem. Eng., 33, 88, 10.1016/j.compchemeng.2008.07.001
Thomassen, 2010, Multivariate data analysis on historical IPV production data for better process understanding and future improvements, Biotechnol. Bioeng., 107, 96, 10.1002/bit.22788
Kirdar, 2007, Application of Multivariate Analysis toward Biotech Processes: Case Study of a Cell-Culture Unit Operation, Biotechnol. Prog., 23, 61, 10.1021/bp060377u
Wang, 2005, Process Monitoring Approach Using Fast Moving Window PCA, Ind. Eng. Chem. Res., 44, 5691, 10.1021/ie048873f
Brand, 2018, Importance of the cultivation history for the response of Escherichia coli to oscillations in scale-down experiments, Bioprocess Biosyst. Eng., 41, 1305, 10.1007/s00449-018-1958-4
Delvigne, 2013, Microbial heterogeneity affects bioprocess robustness: Dynamic single-cell analysis contributes to understanding of microbial populations, Biotechnol. J., 9, 61, 10.1002/biot.201300119
Gawin, 2019, Construction and characterization of broad-host-range reporter plasmid suitable for on-line analysis of bacterial host responses related to recombinant protein production, Microb. Cell Factories, 18, 80, 10.1186/s12934-019-1128-7
Anane, 2018, Modelling concentration gradients in fed-batch cultivations of E. coli - towards the flexible design of scale-down experiments, J. Chem. Technol. Biotechnol., 94, 516, 10.1002/jctb.5798
Enfors, S.-O. (2019). Fermentation Process Technology, Technische Universität Berlin.
(2019, January 01). Wouter Falkena, xml2struct, MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/28518-xml2struct.
MacGregor, 1995, Statistical process control of multivariate processes, Control. Eng. Pr., 3, 403, 10.1016/0967-0661(95)00014-L
Jolliffe, 2002, Principal Component Analysis, Springer Series in Statistics, 98, 487
Abdi, 2010, Principal component analysis. Wiley Interdiscip, Rev. Comput. Stat., 2, 433
Anane, 2017, Modelling overflow metabolism in Escherichia coli by acetate cycling, Biochem. Eng. J., 125, 23, 10.1016/j.bej.2017.05.013
Sokolov, 2017, Enhanced process understanding and multivariate prediction of the relationship between cell culture process and monoclonal antibody quality, Biotechnol. Prog., 33, 1368, 10.1002/btpr.2502
Duan, 2020, Model reduction of aerobic bioprocess models for efficient simulation, Chem. Eng. Sci., 217, 115512, 10.1016/j.ces.2020.115512
Hamelink, 2016, Hybrid modeling as a QbD/PAT tool in process development: An industrial E. coli case study, Bioprocess Biosyst. Eng., 39, 773, 10.1007/s00449-016-1557-1
Narayanan, 2019, A new generation of predictive models: The added value of hybrid models for manufacturing processes of therapeutic proteins, Biotechnol. Bioeng., 116, 2540, 10.1002/bit.27097
Neubauer, 2013, Consistent development of bioprocesses from microliter cultures to the industrial scale, Eng. Life Sci., 13, 224, 10.1002/elsc.201200021
Mercier, 2014, Multivariate PAT solutions for biopharmaceutical cultivation: Current progress and limitations, Trends Biotechnol., 32, 329, 10.1016/j.tibtech.2014.03.008
Lee, 2004, In situ bioprocess monitoring of Escherichia coli bioreactions using Raman spectroscopy, Vib. Spectrosc., 35, 131, 10.1016/j.vibspec.2003.12.015
Buchenauer, 2009, Micro-bioreactors for fed-batch fermentations with integrated online monitoring and microfluidic devices, Biosens. Bioelectron., 24, 1411, 10.1016/j.bios.2008.08.043