Molecules with Large Cavities in Supramolecular Chemistry

Wiley - Tập 31 Số 5 - Trang 528-549 - 1992
Christian Seel1, Fritz Vögtle1
1Institut für Organische Chemie und Biochemie der Universität, Gerhard‐Domagk‐Strasse 1, D‐W‐5300 Bonn 1 (FRG)

Tóm tắt

AbstractSupramolecular chemistryis a new area of research that has rapidly developed from pure synthetic chemistry, and its novelty has led to interdisciplinary cooperation between organic and inorganic chemistry, biochemistry, physical and theoretical chemistry, and physics. Whereasmolecular chemistryessentially deals with the covalent bonding of atoms, Supramolecular chemistry is predominantly involved in the study of the weaker intermolecular interactions resulting in the association and self‐organization of several components to form larger aggregates (supramolecules). The first crown ether discovered by the subsequent Nobel prizewinner Pedersen was more the fortuitous reaction product of an impurity, but nowadays, some twenty‐five years later, chemists are able to tailor host molecules to special requirements. Host compounds having a cyclophane skeleton make an important contribution, since their aromatic structural units ensure the necessary rigidity of the molecular structures and thereby improve the preorganization of the coordination sites for the cooperative binding of the guests. During the course of the rapid development of Supramolecular chemistry such a large number of synthetic hosts has been developed and their interaction with guests studied in such depth that we must restrict ourselves here to a discussion of a particular group of host compounds, namely cavity‐supporting macrobicyclic and macrooligocyclic phanesu, which bear a similar relation to open‐chain and monocyclic hosts as the metal‐complexing cryptands to the podands and crown ethers. The molecular architecture of these three‐dimensionally bridged macrooligocycles is a challenge for synthetic chemistry. (Not only the size and shape of the intramolecular cavity, but also the provision of the latter with suitable coordination centers have to be included in the synthesis strategy.) The capacity for the envelopment of guests from all sides and the expedientendofunctionalization often also produce a particularly strong binding of host and guest, outstanding selectivities with regards to molecular recognition, and special properties of the Supramolecular complexes.

Từ khóa


Tài liệu tham khảo

10.1021/ja01545a048

J.Hubert J.Dale J. Chem. Soc.1965 3160–3170.

10.1002/jlac.19707350122

10.1021/ja00714a072

(c)F.Vögtle P.Neumann J. Chem. Soc. Chem. Commun.1970 1464–1465.

Knops P., 1991, Top. Curr. Chem., 161, 3

10.1007/3-540-54348-1_7

10.1021/jo00009a022

10.1002/ange.19881000805

10.1002/anie.198810211

10.1007/BFb0004364

10.1021/ja00527a083

10.1021/jo00223a013

Keehn P. M., 1983, Cyclophanes I, II in Organic Chemistry

Top. Curr. Chem. 1983 113 Cyclophanes

Top. Curr. Chem. 1983 115

10.1007/978-3-322-92788-0

Diederich F., 1991, Cyclophanes, Monographs in Supramolecular Chemistry

10.1021/ja00547a008

(b)S. J.Abbot A. G. M.Barrett C. R. A.Godfrey S. B.Kalindjian G. W.Simpson D. J.Williams J. Chem. Soc. Chem. Commun.1982 796–797;

(c)F.Vögtle H.Puff E.Friedrichs W. M.Müller J. Chem. Soc. Chem. Commun.1982 1398–1400;

10.1021/ar00089a003

10.1002/cber.19801130428

seeC.Pascard C.Riche M.Cesario F.Kotzyba‐Hibert J.‐M.Lehn J. Chem. Soc. Chem. Commun.1982 557–560.

J.Gabard A.Collet J. Chem. Soc. Chem. Commun.1981 1137–1139.

10.1002/ange.19840961012

10.1002/anie.198408101

10.1002/ange.19840960926

10.1002/anie.198407141

10.1007/978-3-642-75256-8_4

Vögtle F., 1989, Kern. Kemi, 16, 796

Ebmeyer F., 1991, Inclusion‐Compounds, 263, 10.1093/oso/9780198552925.003.0006

10.1007/978-3-663-11771-1

1991, Supramolecular Chemistry, an Introduction

Schneider H.‐J., 1990, Frontiers in Supramolecular Organic Chemistry and Photochemistry

Balzani V, 1991, Supramolecular Photochemistry

Fuhrhop J., 1982, Bioorganische Chemie

10.1007/978-1-4684-0324-4

10.1007/978-3-642-66842-5

Gutsche C. D., 1989, Calixarenes

Top. Curr. Chem. 1981 98 Host Guest Complex Chemistry

Top. Curr. Chem. 1982 101

Top. Curr. Chem. 1983 121

Bioorganic and Biomimetic Chemistry 1985 128

Top. Curr. Chem. 1986 132

Top. Curr. Chem. 1986 136

10.1002/ange.19881000110

10.1002/anie.198800891

10.1002/ange.19901021117

10.1002/anie.199013041

10.1002/ange.19860981202

10.1002/anie.198610393

10.1002/ange.19891010852

1989, Angew. Chem. Int. Ed. Engl. Adv. Mater., 28, 1126

Adv. Mater.1989 275–282.

10.1002/cber.19891220920

K. H.Neumann F.Vögtle J. Chem. Soc. Chem. Commun.1988 520–522.

According to our experience this method is restricted to specially preorganized oligoamines and only certain dialdehydes:M.Bauer F.Kochendörfer M.Kreysel W. M.Müller F.Vögtle unpublished. Cf. ref. [60 147].

J.Jazwinsky J.‐M.Lehn D.Lilienbaum R.Ziessel J.Guilhem C.Pascard J. Chem. Soc. Chem. Commun.1987 1691–1694.

10.1016/S0040-4039(00)80103-3

10.1016/S0277-5387(00)81132-8

10.1021/ja00380a037

In this reaction which is difficult to reproduce the analogous open‐chain tris (bipyridinium) compound could also be isolated and fully characterized. Because of its six positive charges the macrobicycle13could not be detected by mass spectrometry; however its1H and13C NMR spectra are in accord with the cage‐like structure.F.Kochendörfer Dissertation Universität Bonn 1989. Cf. Lit. [86 87].

10.3891/acta.chem.scand.36b-0661

10.1021/ja00305a047

10.1016/S0040-4039(00)95285-7

10.1016/S0040-4020(01)87780-2

A shorter synthetic pathway (path H) is described inJ.Canceill A.Collet J. Chem. Soc. Chem. Commun.1988 582–584.

10.1002/ange.19891010922

10.1002/anie.198912611

10.1002/ange.19891010921

10.1002/anie.198912581

10.1002/ange.19860980608

1986, Angew. Chem. Int. Ed. Engl., 25, 567

1974, Microbial Iron Transport: A. Comprehensive Treatise

10.1007/3-540-13099-3_2

Clarke M. J., 1984, Siderophores from Microorganisms and Plants, Struct. Bonding (Berlin), 58

10.1021/cr00064a005

10.1007/978-1-4615-9480-2

Winkelmann G., 1987, Iron Transport in Microbes, Plants and Animals

10.1021/cr00097a011

Loehr T. M., 1989, Iron Carriers and Iron Proteins

10.1021/ja00335a020

10.1021/ja00187a021

10.1016/0006-291X(70)90819-3

10.1016/0304-4165(70)90038-3

10.1021/ja00423a021

10.1021/ic50189a021

10.1016/S0021-9258(19)69531-1

10.1021/ja00514a037

(a)W. R.Harris F. L.Weitl K. N.Raymond J. Chem. Soc. Chem. Commun.1979 177–178;

10.1021/jm00188a002

10.1021/ja00516a011

Magerstädt M., 1990, Nucl. Med. Biol., 17, 409

We thank Prof.R. C.Hider A. D.Hall andP. D.Taylor University of Essex and King's College London for determining the constants.K. N.Raymondet al. discuss these values in [43d].

10.1016/S0040-4020(01)87606-7

10.1021/ja00245a042

10.1021/ja00257a052

10.1351/pac198860040545

(c)T. J.McMurry K. N.Raymond US‐A 4939254 1990;

10.1021/ja00008a027

10.1016/S0040-4020(01)86788-0

10.1002/cber.19891221227

10.1021/ja00202a058

10.1002/ange.19911030110

10.1002/anie.199100851

Conolly J. S., 1981, Photochemical Conversion and Storage of Solar Energy

Rabani J., 1981, Photochemical Conversion and Storage of Solar Energy

Graetzel M., 1983, Energy Resources through Photochemistry and Catalysis

Norris J. R., 1989, Photochemical Energy Conversion

Hall D. O., 1989, Photoconversion Processes for Energy and Chemicals, 10.4324/9780203216255

10.1007/978-94-009-4642-2_1

10.1007/978-94-009-3979-0_1

Hennig H., 1987, Photochemische and Photokatalytische Reaktionen von Koordinationsverbindungen, 10.1515/9783112524923

10.1351/pac199062061099

10.1016/0010-8545(82)85003-0

Seddon E. A., 1984, The Chemistry of Ruthenium

10.1021/cr00072a002

10.1007/978-3-642-72666-8_14

10.1007/3-540-17881-3_1

10.1016/0010-8545(88)80032-8

10.1007/3-540-52568-8_2

Belser P., 1990, Chimia, 44, 226, 10.2533/chimia.1990.226

10.1021/ja00195a021

10.1002/ange.19860981224

10.1002/anie.198611191

10.1007/BF00656589

P.Belser L.De Cola A.von Zelewsky J. Chem. Soc. Chem. Commun.1988 1057–1058.

10.1021/ja00229a044

10.1021/ic00328a032

10.1021/ic00289a003

10.1016/S0040-4039(00)82044-4

10.1002/hlca.19840670833

10.1002/hlca.19850680609

10.1002/hlca.19880710515

10.1016/S0040-4039(00)99650-3

10.1515/znb-1988-0320

10.1002/ange.19870990323

10.1002/anie.198702661

10.1002/ange.19870991226

10.1002/anie.198712661

10.1002/hlca.19900730111

10.1002/ange.19911031025

10.1002/anie.199113311

10.1016/S0040-4039(00)97808-0

10.1002/ange.19901020306

10.1002/anie.199002451

10.1021/ja00180a038

10.1021/ja00159a057

10.1021/ja00178a027

10.1021/ja00002a071

10.1021/ja00002a048

10.1021/ja00167a066

10.1002/ange.19901020820

10.1002/anie.199009231

10.1021/ja00176a048

10.1021/ed067p821

This list of examples does not claim to be complete.

Jenks W. P., 1969, Catalysis in Chemistry and Enzymologie

Tanford C., 1980, The Hydrophobic Effect: Formation of Micelles and Biological Membranes

Ben‐Nairn A., 1983, Hydrophobic Interaction

Fersht A., 1985, Enzyme Structure and Mechanism

10.1002/ange.19881000307

10.1002/anie.198803621

10.1021/ed067p813

10.1021/ja00014a037

10.1021/ja00014a038

10.1021/ja00157a052

Reichardt C., 1988, Solvents and Solvent Effects in Organic Chemistry

10.1021/ja00227a025

10.1021/ja00269a025

10.1021/jo00258a052

10.1021/ja00190a058

See also in Section 4.3 the solubility dependence of halomethane complexation by cryptophanes see [28].

Wyckoff R. W. G., 1969, Crystal Structures of Benzene Derivatives

(b)G. R.Desiraju A.Gavezzotti J. Chem. Soc. Chem. Commun.1989 621–623.

10.1007/978-1-4612-5190-3

10.1126/science.3892686

10.1021/ja00285a019

10.1021/ja00307a016

In crystals of arenes this type of packing is termed “herringbone stacking”. See [78 b].

10.1021/ja00350a004

10.1021/ja00170a016

See alsoC. A.Hunter J. Chem. Soc. Chem. Commun.1991 749–751.

10.1002/ange.19860981228

10.1002/anie.198611271

10.1002/ange.19891011023

10.1002/anie.198913961

(b)P. R.Ashton C. L.Brown E. J. T.Chrystal T. T.Goodnow A. E.Kaifer K. P.Parry D.Philp A. M. Z.Slawin N.Spencer J. F.Stoddart D. J.Williams J. Chem. Soc. Chem. Commun.1991 634–639;

10.1055/s-1991-20759

10.1002/ange.19891011022

10.1002/anie.198913941

10.1002/ange.19881001134

10.1002/anie.198815531

10.1016/S0040-4020(01)87583-9

Jazwinski J., 1987, Tetrahedron Lett., 28, 6057

10.1021/ja00202a077

10.1021/ja00176a029

10.1021/ja00170a049

10.1021/ja00227a045

10.1002/ange.19901020832

10.1002/anie.199009151

10.1021/ja00288a034

(a)H.‐J.Schneider T.Blatter S.Simova I.Theis J. Chem. Soc. Chem. Commun.1989 580–581;

10.1002/ange.19901021029

10.1002/anie.199011591

10.1002/ange.19901021030

10.1002/anie.199011611

10.1002/ange.19911031104

10.1002/anie.199114171

10.1002/ange.19891010132

10.1002/anie.198900791

10.1002/ange.19911030416

10.1002/anie.199104421

(a)F.Vögtle A.Wallon W. M.Müller U.Werner M.Nieger J. Chem. Soc. Chem. Commun.1990 158–161;

10.1002/cber.19901230435

10.1002/hlca.19820650623

M.Dhaenens L.Lacombe J.‐M.Lehn J.‐P.Vigneron J. Chem. Soc. Chem. Commun.1984 1097–1099;

10.1021/jo00289a015

10.1016/S0040-4039(00)98530-7

10.1007/BF00658985

C.Seel Dissertation Universität Bonn 1991.

10.1021/ja00159a039

10.1016/S0040-4039(00)98911-1

(a) Complexation of inorganic anions by oligocyclic phanes: Ref. [11];

10.1016/S0040-4039(00)85349-6

10.1016/S0040-4039(00)82024-9

10.1002/nadc.19880360104

J.‐M.Lehn R.Méric J.‐P.Vigneron I.Bkouche‐Waksman C.Pascard J. Chem. Soc. Chem. Commun.1991 62–64; see also Ref. [22].

10.1021/ja00282a056

10.1021/ja00220a075

10.1021/ja00181a064

10.1021/ja00317a056

10.1021/ja00184a044

10.1021/ja00166a027

10.1021/ja00032a057

10.1021/ja00212a058

10.1021/ja00203a062

10.1016/S0040-4039(00)97591-9

10.1002/cber.19911240225

10.1021/ja00010a072

10.1002/ange.19911031026

10.1002/anie.199113331

10.1007/3-540-12821-2_6

10.1007/BFb0036791

J. E.Baldwin J. H.Cameron M. J.Crossley I. J.Dagley S. R.Hall T.Klose J. Chem. Soc. Dalton Trans.1984 1739–1746 and references cited therein.

10.1021/ja00372a003

10.1021/ja00010a056

10.1021/ja00183a079

10.1021/ja00458a045

10.1021/ja00011a024

10.1021/ja00219a023

10.1021/ja00219a024

10.1021/ja00169a056

Ortiz de Montellano P. R., 1986, Cytochrom P‐450: Structure, Mechanism and Biochemistry, 10.1007/978-1-4757-9939-2

10.1002/cber.19550880909

10.1002/ange.19820941016

10.1002/anie.198207811

10.1021/ja00338a005

10.1002/ange.19870990920

10.1002/anie.198709011

10.1007/BF00656165

10.1002/cber.19901230224

10.1002/ange.19750871507

10.1002/anie.197505551

10.1351/pac197951050979

Lamb J. D., 1981, Progr. Macrocyclic Chem., 2, 41

(d) ref. [123];

10.1021/jo00367a002

(f)A.Harada S.Takahashi J. Chem. Soc. Chem. Commun.1987 527–528;

(g) ref. [87];

10.1002/hlca.19860690103

(i) ref. [16j] p. 104–107;

10.1021/ja00160a065

10.1021/ja00009a066

10.1021/ja00012a063

(m) ref. [96].

10.1002/ange.19850970321

10.1002/anie.198502191

10.1002/ange.19860980407

10.1002/anie.198603361

10.1007/BF00663048

J.Canceill M.Cesario A.Collet J.Guilhem C.Pascard J. Chem. Soc. Chem. Commun.1985 361–363.

J.Canceill M.Cesario A.Collet J.Guilhem C.Riche C.Pascard J. Chem. Soc. Chem. Commun.1986 339–341.

10.1021/ja00310a041

10.1002/cber.19851180915

10.1021/ja00274a067

10.1002/ange.19891010912

10.1002/anie.198912461

J.Canceill L.Lacombe A.Collet J. Chem. Soc. Chem. Commun.1987 219–221.

F.Vögtle R.Berscheid W.Schnick J. Chem. Soc. Chem. Commun.1991 414–416.

10.1021/ja00207a037

10.1021/ja00180a044

F.Vögtle M.Nieger R.Berscheid J. Chem. Soc. Chem. Commun.1991 1364–1366.

Fendler J. H., 1975, Catalysis in Micellar and Macromolecular Systems

Walsh C., 1979, Enzymatic Reaction Mechanisms

10.1007/978-3-663-00108-9

Page M. I., 1987, Enzyme Mechanisms

Liebman J. F., 1989, Mechanistic Principles of Enzyme Activity

(f) ref. [70 a d].

10.1002/ange.19860981227

10.1002/anie.198611251

10.1016/S0040-4039(00)94244-8

10.1021/jo00247a017

10.1002/ange.19901020222

10.1002/anie.199001911

(a)Y.Murakami J.Kikuchi T.Hirayama Chem. Lett.1987 161–164;

10.1351/pac198860040549

Cf.Y.Murakami J.Kikuchi H.Tenma J. Chem. Soc. Chem. Commun.1985 753–755.

A chiral variant has recently been described:Y.Murakami T.Ohno O.Hayashida Y.Hisaeda J. Chem. Soc. Chem. Commun.1991 950–952.

Y.Murakami J.Kikuchi T.Ohno T.Hirayama Chem. Lett.1989 881–884.

Y.Murakami J.Kikuchi T.Ohno T.Hirayama H.Nishimura Chem. Lett.1989 1199–1202.

Recent publications that could not be considered here:Y.Murakami T.Ohno O.Hayashida Y.Hisaeda Chem. Lett.1991 1595–1598;

Y.Murakami J.‐I.Kikuchi T.Ohno T.Hirayama Y.Hisaeda H.Nuhimura Chem. Lett.1991 1657–1660.

10.1021/ja00216a031

10.1021/ja00006a040

10.1021/ja00194a074

10.1021/ja00006a043

10.1021/ja00215a037

10.1016/S0040-4039(00)93441-5

10.1021/ja00007a060

M. L. C.Quan C. B.Knobler D. J.Cram J. Chem. Soc. Chem. Commun.1991 660–662.

10.1021/ja00007a085

10.1021/ja00160a072

10.1002/ange.19911030848

10.1002/anie.199110241

10.1007/978-3-322-96705-3

1992, Fascinating Molecules in Organic Chemistry

10.1021/ja00002a010

10.1016/S0040-4039(00)88502-0

10.1248/cpb.37.257

(b)S.Kumar H.‐J.Schneider J. Chem. Soc. Perkin Trans. 21989 245–250;

10.1002/ange.19901020731

10.1002/anie.199007691

10.1021/ja00166a025

10.1016/S0040-4039(01)80077-0

(b) ref. [130];

10.1021/ja00247a051

10.1021/ja00255a020

10.1021/ja00228a036

(f)C. B.Knobler F. C. A.Gaeta D. J.Cram J. Chem. Soc. Chem. Commun.1988 330–333;

10.1002/ange.19881001217

10.1002/anie.198817051

10.1021/jo00286a003

10.1021/cr00092a006

10.1021/ja00195a071

(l) ref. [108];

(m) ref. [9d] Chapter 6;

(n) ref. [141].

10.1002/ange.19901020204

10.1002/anie.199001381

E.Buhleier W.Wehner F.Vögtle Synthesis1978 155–158.

10.1021/ja00264a054

10.1021/ja00179a034

J.‐M.Lehn J.Malthěte A.‐M.Levelut J. Chem. Soc. Chem. Commun.1985 1794–1796;

10.1016/S0040-4039(00)82119-X

10.1021/ja00184a075

10.1002/ange.19911030521

10.1002/anie.199105751

Srivasta S. C., 1988, Radiolabeled Monoclonal Antibodies, 10.1007/978-1-4684-5538-0

10.1002/nadc.19900380607