Molecular mechanism of resveratrol promoting differentiation of preosteoblastic MC3T3-E1 cells based on network pharmacology and experimental validation
Tóm tắt
The purpose of this study was to investigate the mechanism by which resveratrol (Res) inhibits apoptosis and promotes proliferation and differentiation of pre-osteoblastic MC3T3-E1 cells, laying the groundwork for the treatment of osteoporosis (OP). The TCMSP database was used to find the gene targets for Res. The GeneCards database acquire the gene targets for OP. After discovering the potential target genes, GO, KEGG, and Reactome enrichment analysis were conducted. Verifying the major proteins involved in apoptosis can bind to Res using molecular docking. CCK8 measured the proliferative activity of mouse pre-osteoblasts in every group following Res intervention. Alkaline phosphatase staining (ALP) and alizarin red staining to measure the ability of osteogenic differentiation. RT-qPCR to determine the expression levels of Runx2 and OPG genes for osteogenic differentiation ability of cells. Western blot to measure the degree of apoptosis-related protein activity in each group following Res intervention. The biological processes investigated for GO of Res therapeutic OP involved in cytokine-mediated signaling pathway, negative regulation of apoptotic process, Aging, extrinsic apoptotic signaling pathway in absence of ligand, according to potential therapeutic target enrichment study. Apoptosis, FoxO signaling pathway, and TNF signaling pathway are the primary KEGG signaling pathways. Recactome pathways are primarily engaged in Programmed Cell Death, Apoptosis, Intrinsic Apoptotic Pathway, and Caspase activation via extrinsic apoptotic signaling pathways. This research established a new approach for Res treatment of OP by demonstrating how Res controls the apoptosis-related proteins TNF, IL6, and CASP3 to suppress osteoblast death and increase osteoclastogenesis.
Từ khóa
Tài liệu tham khảo
Wang L, Yu W, Yin X, Cui L, Tang S, Jiang N, Cui L, Zhao N, Lin Q, Chen L, et al. Prevalence of osteoporosis and fracture in China: the china osteoporosis prevalence study. JAMA Netw Open. 2021;4(8):e2121106.
Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022;123:14–21.
Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J Med. 2016;374(3):254–62.
Kendler DL, Marin F, Zerbini CAF, Russo LA, Greenspan SL, Zikan V, Bagur A, Malouf-Sierra J, Lakatos P, Fahrleitner-Pammer A, et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2018;391(10117):230–40.
LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ, Siris ES. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022;33(10):2049–102.
Kanis JA, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3–44.
Management of osteoporosis in postmenopausal women. the 2021 position statement of The North American Menopause Society. Menopause. 2021;28(9):973–97.
Rozenberg S, Al-Daghri N, Aubertin-Leheudre M, Brandi ML, Cano A, Collins P, Cooper C, Genazzani AR, Hillard T, Kanis JA, et al. Is there a role for menopausal hormone therapy in the management of postmenopausal osteoporosis? Osteoporos Int. 2020;31(12):2271–86.
Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, et al. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med. 2022;17(1):86.
Miller JL, Binns HJ, Brickman WJ. Complementary and alternative medicine use in children with type 1 diabetes: a pilot survey of parents. Explore (NY). 2008;4(5):311–4.
Mosavat SH, Pasalar M, Joulaei H, Ameli V, Heydari ST, Mirzazadeh A, Hashempur MH. Complementary and alternative medicine use among people living with HIV in Shiraz, Southern Iran. Front Public Health. 2023;11:1206665.
Wang YC, Chiang JH, Hsu HC, Tsai CH. Decreased fracture incidence with traditional Chinese medicine therapy in patients with osteoporosis: a nationwide population-based cohort study. BMC Complement Altern Med. 2019;19(1):42.
Druart L, Pinsault N. The I-CAM-FR: a French translation and cross-cultural adaptation of the I-CAM-Q. Medicines (Basel). 2018;5(3):72.
He X, Wang J, Li M, Hao D, Yang Y, Zhang C, He R, Tao R. Eucommia ulmoides Oliv.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol. 2014;151(1):78–92.
Jia Y, Sun J, Zhao Y, Tang K, Zhu R, Zhao W, Wang R, Zhang Y, Lin N, Chen W. Chinese patent medicine for osteoporosis: a systematic review and meta-analysis. Bioengineered. 2022;13(3):5581–97.
Zhang ND, Han T, Huang BK, Rahman K, Jiang YP, Xu HT, Qin LP, Xin HL, Zhang QY, Li YM. Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antiosteoporotic drug discovery. J Ethnopharmacol. 2016;189:61–80.
Lei SS, Su J, Zhang Y, Huang XW, Wang XP, Huang MC, Li B, Shou D. Benefits and mechanisms of polysaccharides from Chinese medicinal herbs for anti-osteoporosis therapy: A review. Int J Biol Macromol. 2021;193(Pt B):1996–2005.
Zhao BJ, Wang J, Song J, Wang CF, Gu JF, Yuan JR, Zhang L, Jiang J, Feng L, Jia XB. Beneficial effects of a flavonoid fraction of herba epimedii on bone metabolism in ovariectomized rats. Planta Med. 2016;82(4):322–9.
Ming LG, Chen KM, Xian CJ. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol. 2013;228(3):513–21.
Rayalam S, Della-Fera MA, Baile CA. Synergism between resveratrol and other phytochemicals: implications for obesity and osteoporosis. Mol Nutr Food Res. 2011;55(8):1177–85.
He S, Wang T, Shi C, Wang Z, Fu X. Network pharmacology-based approach to understand the effect and mechanism of Danshen against anemia. J Ethnopharmacol. 2022;282: 114615.
Mobasheri A, Shakibaei M. Osteogenic effects of resveratrol in vitro: potential for the prevention and treatment of osteoporosis. Ann N Y Acad Sci. 2013;1290:59–66.
Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13.
UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480-d489.
Barshir R, Fishilevich S, Iny-Stein T, Zelig O, Mazor Y, Guan-Golan Y, Safran M, Lancet D. GeneCaRNA: a comprehensive gene-centric database of human non-coding RNAs in the GeneCards suite. J Mol Biol. 2021;433(11):166913.
Sneha P, Thirumal Kumar D, Lijo J, Megha M, Siva R. George priya doss c: probing the protein-protein interaction network of proteins causing maturity onset diabetes of the young. Adv Protein Chem Struct Biol. 2018;110:167–202.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
De Marinis I, Lo Surdo P, Cesareni G, Perfetto L. SIGNORApp: a Cytoscape 3 application to access SIGNOR data. Bioinformatics. 2021.
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-d361.
Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48(D1):D498-d503.
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587-d592.
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91.
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388-d1395.
Kuriakose A, Nair B, Abdelgawad MA, Adewum AT, Soliman MES, Mathew B, Nath LR. Evaluation of the active constituents of Nilavembu Kudineer for viral replication inhibition against SARS-CoV-2: An approach to targeting RNA-dependent RNA polymerase (RdRp). J Food Biochem. 2022;46(11):e14367.
Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61(8):3891–8.
Ma J, Wang Z, Zhao J, Miao W, Ye T, Chen A. Resveratrol Attenuates Lipopolysaccharides (LPS)-Induced Inhibition of Osteoblast Differentiation in MC3T3-E1 Cells. Med Sci Monit. 2018;24:2045–52.
Wang Y, Zhang L, Wang K, Zhou H, Li G, Xu L, Hu Z, Cao X, Shi F, Zhang S. Circulating Exosomes from Mice with LPS-Induced Bone Loss Inhibit Osteoblast Differentiation. Calcif Tissue Int. 2022;111(2):185–95.
Zhao H, Li X, Zhang D, Chen H, Chao Y, Wu K, Dong X, Su J. Integrative bone metabolomics-lipidomics strategy for pathological mechanism of postmenopausal osteoporosis mouse model. Sci Rep. 2018;8(1):16456.
Liu X, Tao J, Yao Y, Yang P, Wang J, Yu M, Hou J, Zhang Y, Gui LI. Resveratrol induces proliferation in preosteoblast cell MC3T3-E1 via GATA-1 activating autophagy. Acta Biochim Biophys Sin (Shanghai). 2021;53(11):1495–504.
Zhu W, Li Y, Zhao J, Wang Y, Li Y, Wang Y. The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking. Ann Med. 2022;54(1):541–52.