Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes

Tsukasa Kawahara1, Mark T. Quinn2, J. David Lambeth1
1Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA
2Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, 59717, USA

Tóm tắt

AbstractBackground

NADPH-oxidases (Nox) and the related Dual oxidases (Duox) play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS). Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes.

Results

We assembled and analyzed the deduced amino acid sequences of 101 Nox/Duox orthologs from 25 species, including vertebrates, urochordates, echinoderms, insects, nematodes, fungi, slime mold amoeba, alga and plants. In contrast to ROS defense enzymes, such as superoxide dismutase and catalase that are present in prokaryotes, ROS-generating Nox/Duox orthologs only appeared later in evolution. Molecular taxonomy revealed seven distinct subfamilies of Noxes and Duoxes. The calcium-regulated orthologs representing 4 subfamilies diverged early and are the most widely distributed in biology. Subunit-regulated Noxes represent a second major subdivision, and appeared first in fungi and amoeba. Nox5 was lost in rodents, and Nox3, which functions in the inner ear in gravity perception, emerged the most recently, corresponding to full-time adaptation of vertebrates to land. The sea urchinStrongylocentrotus purpuratuspossesses the earliest Nox2 co-ortholog of vertebrate Nox1, 2, and 3, while Nox4 first appeared somewhat later in urochordates. Comparison of evolutionary substitution rates demonstrates that Nox2, the regulatory subunits p47phoxand p67phox, and Duox are more stringently conserved in vertebrates than other Noxes and Nox regulatory subunits. Amino acid sequence comparisons identified key catalytic or regulatory regions, as 68 residues were highly conserved among all Nox/Duox orthologs, and 14 of these were identical with those mutated in Nox2 in variants of X-linked chronic granulomatous disease. In addition to canonical motifs, the B-loop, TM6-FAD, VXGPFG-motif, and extreme C-terminal regions were identified as important for Nox activity, as verified by mutational analysis. The presence of these non-canonical, but highly conserved regions suggests that all Nox/Duox may possess a common biological function remained in a long history of Nox/Duox evolution.

Conclusion

This report provides the first comprehensive analysis of the evolution and conserved functions of Nox and Duox family members, including identification of conserved amino acid residues. These results provide a guide for future structure-function studies and for understanding the evolution of biological functions of these enzymes.

Từ khóa


Tài liệu tham khảo

Burdon R: Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med. 1995, 18 (4): 775-794. 10.1016/0891-5849(94)00198-S.

Lambeth JD: NOX enzymes and the biology of reactive oxygen. Nature Review Immunology. 2004, 4 (3): 181-189. 10.1038/nri1312.

Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological Reviews. 2007, 87 (1): 245-313. 10.1152/physrev.00044.2005.

Carol RJ, Dolan L: The role of reactive oxygen species in cell growth: lessons from root hairs. Journal of Experimental Botany. 2006, 57 (8): 1829-1834. 10.1093/jxb/erj201.

Nauseef WM: Assembly of the phagocyte NADPH oxidase. Histochemistry and Cell Biology. 2004, 122 (4): 277-291. 10.1007/s00418-004-0679-8.

Sumimoto H, Miyano K, Takeya R: Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochemical and Biophysical Research Communications. 2005, 338 (1): 677-686. 10.1016/j.bbrc.2005.08.210.

Vignais PV: The superoxide-generating NADPH oxidase; structural aspects and activation mechanism. Cellular and Molecular Life Sciences. 2002, 59 (9): 1428-1459. 10.1007/s00018-002-8520-9.

Segal AW, West I, Wientjes F, Nugent JHA, Chavan AJ, Haley B, Garcia RC, Rosen H, Scrace G: Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagoctyes. Biochemical Journal. 1992, 284: 781-788.

Sumimoto H, Sakamoto N, Nozaki M, Sakaki Y, Takeshige K, Minakami S: Cytochrome b558, a component of the phagocyte NADPH oxidase, is a flavoprotein. Biochemical and Biophysical Research Communications. 1992, 186: 1368-1375. 10.1016/S0006-291X(05)81557-8.

Rotrosen D, Yeung CL, Leto TL, Malech HL, Kwong CH: Cytochrome b558: The flavin-binding component of the phagocyte NADPH oxidase. Science. 1992, 256: 1459-1462. 10.1126/science.1318579.

Banfi B, Clark RA, Steger K, Krause KH: Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. Journal of Biological Chemistry. 2003, 278 (6): 3510-3513. 10.1074/jbc.C200613200.

Geiszt M, Lekstrom K, Witta J, Leto TL: Proteins Homologous to p47phox and p67phox Support Superoxide Production by NAD(P)H Oxidase 1 in Colon Epithelial Cells. Journal of Biological Chemistry. 2003, 278 (22): 20006-20012. 10.1074/jbc.M301289200.

Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, Sumimoto H: Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. Journal of Biological Chemistry. 2003, 278 (27): 25234-25246. 10.1074/jbc.M212856200.

Kawahara T, Kuwano Y, Teshima-Kondo S, Takeya R, Sumimoto H, Kishi K, Tsunawaki S, Hirayama T, Rokutan K: Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to Toll-like receptor 5 signaling in large intestinal epithelial cells. The Journal of Immunology. 2004, 172 (5): 3051-3058.

Kawahara T, Kohjima M, Kuwano Y, Mino H, Teshima-Kondo S, Takeya R, Tsunawaki S, Wada A, Sumimoto H, Rokutan K: Helicobacter pylori lipopolysaccharide activates Rac1 and transcription of NADPH oxidase Nox1 and its organizer NOXO1 in guinea pig gastric mucosal cells. American Journal of Physiology – Cell Physiology. 2005, 288 (2): C450-457. 10.1152/ajpcell.00319.2004.

Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH: NOX3, a superoxide-generating NADPH oxidase of the inner ear. Journal of Biological Chemistry. 2004, 279 (44): 46065-46072. 10.1074/jbc.M403046200.

Cheng G, Ritsick DR, Lambeth JD: Nox3 regulation by NOXO1, p47phox and p67phox. Journal of Biological Chemistry. 2004

Kiss PJ, Knisz J, Zhang Y, Baltrusaitis J, Sigmund CD, Thalmann R, Smith RJ, Verpy E, Banfi B: Inactivation of NADPH oxidase organizer 1 results in severe imbalance. Current Biology. 2006, 16 (2): 208-213. 10.1016/j.cub.2005.12.025.

Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP: Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. Journal of Biological Chemistry. 2004, 279 (44): 45935-45941. 10.1074/jbc.M406486200.

Kawahara T, Ritsick D, Cheng G, Lambeth JD: Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. Journal of Biological Chemistry. 2005, 280 (36): 31859-31869. 10.1074/jbc.M501882200.

Martyn K, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG: Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cellular Signalling. 2006, 18 (1): 69-82. 10.1016/j.cellsig.2005.03.023.

Banfi B, Molnar G, Maturana A, Steger K, Hegedus B, Demaurex N, Krause KH: A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. Journal of Biological Chemistry. 2001, 276 (40): 37594-37601. 10.1074/jbc.M103034200.

Banfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnar GZ, Krause KH, Cox JA: Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). Journal of Biological Chemistry. 2004, 279 (18): 18583-18591. 10.1074/jbc.M310268200.

Edens WA, Sharling L, Cheng G, Shapira R, Kinkade JM, Edens HA, Tang X, Flaherty DB, Benian G, Lambeth JD: Tyrosine cross-linking of extracellullar matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. Journal of Cell Biology. 2001, 154: 879-891. 10.1083/jcb.200103132.

Ameziane-El-Hassani R, Morand S, Boucher JL, Frapart YM, Apostolou D, Agnandji D, Gnidehou S, Ohayon R, Noel-Hudson MS, Francon J: Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. Journal of Biological Chemistry. 2005, 280 (34): 30046-30054. 10.1074/jbc.M500516200.

Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C: A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell. 1998, 10 (2): 255-266. 10.1105/tpc.10.2.255.

Teshima S, Rokutan K, Nikawa T, Kishi K: Guinea pig gastric mucosal cells produce abundant superoxide anion through an NADPH oxidase-like system. Gastroenterology. 1998, 115 (5): 1186-1196. 10.1016/S0016-5085(98)70090-3.

Inoue Y, Ogasawara M, Moroi T, Satake M, Azumi K, Moritomo T, Nakanishi T: Characteristics of NADPH oxidase genes (Nox2, p22, p47, and p67) and Nox4 gene expressed in blood cells of juvenile Ciona intestinalis. Immunogenetics. 2005, 57 (7): 520-534. 10.1007/s00251-005-0010-4.

Torres MA, Jones JD, Dangl JL: Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nature Genetics. 2005, 37 (10): 1130-1134. 10.1038/ng1639.

Lardy B, Bof M, Aubry L, Paclet M, Morel F, Satre M, Klein G: NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum. Biochimica et Biophysica Acta. 2005, 1744 (2): 199-212.

Herve C, Tonon T, Collen J, Corre E, Boyen C: NADPH oxidases in Eukaryotes: red algae provide new hints!. Current Genetics. 2006, 49 (3): 190-204. 10.1007/s00294-005-0044-z.

Davis AR, Mascolo PL, Bunger PL, Sipes KM, Quinn MT: Cloning and sequencing of the bovine flavocytochrome b subunit proteins, gp91-phox and p22-phox: comparison with other known flavocytochrome b sequences. Journal of Leukocyte Biology. 1998, 64 (1): 114-123.

Lara-Ortiz T, Riveros-Rosas H, Aguirre J: Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Molecular Microbiology. 2003, 50 (4): 1241-1255. 10.1046/j.1365-2958.2003.03800.x.

Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD: Cell transformation by the superoxide-generating oxidase Mox1. Nature. 1999, 401 (6748): 79-82. 10.1038/43459.

Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y, Grant SL, Lambeth JD, Griendling KK: Novel gp91(phox) homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. [see comment]. Circulation Research. 2001, 88 (9): 888-894. 10.1161/hh0901.090299.

Geiszt M, Kopp JB, Varnai P, Leto TL: Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA. 2000, 97 (14): 8010-8014. 10.1073/pnas.130135897.

Shiose A, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S, Hattori M, Sakaki Y, Sumimoto H: A novel superoxide-producing NAD(P)H oxidase in kidney. Journal of Biological Chemistry. 2001, 276 (2): 1417-1423. 10.1074/jbc.M007597200.

De Deken X, Wang D, Many MC, Costagliola S, Libert F, Vassart G, Dumont JE, Miot F: Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. Journal of Biological Chemistry. 2000, 275 (30): 23227-23233. 10.1074/jbc.M000916200.

Inoue Y, Suenaga Y, Yoshiura Y, Moritomo T, Ototake M, Nakanishi T: Molecular cloning and sequencing of Japanese pufferfish (Takifugu rubripes) NADPH oxidase cDNAs. Developmental & Comparative Immunology. 2004, 28 (9): 911-925. 10.1016/j.dci.2004.03.002.

Wong JL, Wessel GM: Reactive oxygen species and Udx1 during early sea urchin development. Developmental Biology. 2005, 288 (2): 317-333. 10.1016/j.ydbio.2005.07.004.

Maru Y, Nishino T, Kakinuma K: Expression of Nox genes in rat organs, mouse oocytes, and sea urchin eggs. DNA Sequence. 2005, 16 (2): 83-88.

Torres MA, Jones JD, Dangl JL: Reactive oxygen species signaling in response to pathogens. Plant Physiology. 2005, 141 (2): 373-378. 10.1104/pp.106.079467.

Moreno JC, Bikker H, Kempers MJ, van Trotsenburg AS, Baas F, de Vijlder JJ, Vulsma T, Ris-Stalpers C: Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. The New England Journal of Medicine. 2002, 347 (2): 95-102. 10.1056/NEJMoa012752.

Paffenholz R, Bergstrom RA, Pasutto F, Wabnitz P, Munroe RJ, Jagla W, Heinzmann U, Marquardt A, Bareiss A, Laufs J: Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes & Development. 2004, 18 (5): 486-491. 10.1101/gad.1172504.

Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, Takai S, Yamanishi K, Miyazaki M, Matsubara H: Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation. 2005, 112 (17): 2677-2685. 10.1161/CIRCULATIONAHA.105.573709.

Dikalova A, Clempus R, Lassegue B, Cheng G, McCoy J, Dikalov S, San Martin A, Lyle A, Weber DS, Weiss D: Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation. 2005, 112 (17): 2668-2676. 10.1161/CIRCULATIONAHA.105.538934.

Ha EM, Oh CT, Bae YS, Lee WJ: A direct role for dual oxidase in Drosophila gut immunity. Science. 2005, 310 (5749): 847-850. 10.1126/science.1117311.

Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F, Krause KH: Decreased blood pressure in NOX1-deficient mice. FEBS Letters. 2006, 580 (2): 497-504. 10.1016/j.febslet.2005.12.049.

Sea Urchin Genome Sequencing Consortium, Sodergren EWG, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Belle R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Geneviere AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron KF, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallbook F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su YH, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Rottinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu SY, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu LL, Thorn R, Wright R: The genome of the sea urchin Strongylocentrotus purpuratus. Science. 2006, 314 (5801): 941-952. 10.1126/science.1133609.

Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H: The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. Journal of Biological Chemistry. 2005, 280 (24): 23328-23339. 10.1074/jbc.M414548200.

NCBI-BLAST. [http://http//www.ncbi.nlm.nih.gov/BLAST/]

Kozak M: An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research. 1987, 15 (20): 8125-8148. 10.1093/nar/15.20.8125.

Eichinger L, Noegel AA: Comparative genomics of Dictyostelium discoideum and Entamoeba histolytica. Current Opinion in Microbiology. 2005, 8 (5): 606-611. 10.1016/j.mib.2005.08.009.

UCSC-genome-server. [http://genome.ucsc.edu/cgi-bin/hgBlat]

Ensembl-BlastView. [http://www.ensembl.org/Multi/blastview]

Grasberger H, Refetoff S: Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. Journal of Biological Chemistry. 2006, 281 (27): 18269-18272. 10.1074/jbc.C600095200.

Biberstine-Kinkade KJ, DeLeo FR, Epstein RI, LeRoy BA, Nauseef WM, Dinauer MC: Heme-ligating histidines in flavocytochrome b(558): identification of specific histidines in gp91(phox). Journal of Biological Chemistry. 2001, 276 (33): 31105-31112. 10.1074/jbc.M103327200.

Ishibashi F, Nunoi H, Endo F, Matsuda I, Kanegasaki S: Statistical and mutational analysis of chronic granulomatous disease in Japan with special reference to gp91-phox and p22-phox deficiency. Human Genetics. 2000, 106 (5): 473-481. 10.1007/s004390000288.

Heyworth PG, Cross AR, Curnutte JT: Chronic granulomatous disease. Current Opinion in Immunology. 2003, 15 (5): 578-584. 10.1016/S0952-7915(03)00109-2.

Bionda C, Li XJ, van Bruggen R, Eppink M, Roos D, Morel F, Stasia MJ: Functional analysis of two-amino acid substitutions in gp91 phox in a patient with X-linked flavocytochrome b558-positive chronic granulomatous disease by means of transgenic PLB-985 cells. Human Genetics. 2004, 115 (5): 418-427. 10.1007/s00439-004-1173-z.

Baniulis D, Nakano Y, Nauseef WM, Banfi B, Cheng G, Lambeth DJ, Burritt JB, Taylor RM, Jesaitis AJ: Evaluation of two anti-gp91phox antibodies as immunoprobes for Nox family proteins: mAb 54.1 recognizes recombinant full-length Nox2, Nox3 and the C-terminal domains of Nox1-4 and cross-reacts with GRP 58. Biochimica et Biophysica Acta. 2005, 1752 (2): 186-196.

Kretsinger RH, Nockolds CE: Carp muscle calcium-binding protein. II. Structure determination and general description. Journal of Biological Chemistry. 1973, 248 (9): 3313-3326.

Grabarek Z: Structural basis for diversity of the EF-hand calcium-binding proteins. Journal of Molecular Biology. 2006, 359 (3): 509-525. 10.1016/j.jmb.2006.03.066.

PROSITE-database. [http://ca.expasy.org/prosite/]

SWISS-MODEL. [http://swissmodel.expasy.org/]

PROSITE-documentation-PDOC00018. [http://au.expasy.org/cgi-bin/nicedoc.pl?PS00018]

Leblanc C, Richard O, Kloareg B, Viehmann S, Zetsche K, Boyen C: Origin and evolution of mitochondria: what have we learnt from red algae?. Current Genetics. 1997, 31 (3): 193-207. 10.1007/s002940050196.

Kaplan G, Bertheussen K: The morphology of echinoid phagocytes and mouse peritoneal macrophages during phagocytosis in vitro. Scandinavian Journal of Immunology. 1977, 6 (12): 1289-1296.

Smith LC, Chang L, Britten RJ, Davidson EH: Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags. Complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes. The Journal of Immunology. 1996, 156 (2): 593-602.

Clow LA, Raftos DA, Gross PS, Smith LC: The sea urchin complement homologue, SpC3, functions as an opsonin. Journal of Experimental Biology. 2004, 207 (Pt 12): 2147-2155. 10.1242/jeb.01001.

Nei M: Molecular Evolutionary Genetics. 1987, New York: Columbia University Press

Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL: Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 2003, 17 (11): 1502-1504.

Wong JL, Creton R, Wessel GM: The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1. Developmental Cell. 2004, 7 (6): 801-814. 10.1016/j.devcel.2004.10.014.

Roman DG, Dancis A, Anderson GJ, Klausner RD: The fission yeast ferric reductase gene frp1+ is required for ferric iron uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase. Mol Cell Biol. 1993, 13 (7): 4342-4350.

Zhu Y, Marchal C, Casbon A, Stull N, von Lohneysen K, Knaus UG, Jesaitis AJ, McCormick S, Nauseef WM, Dinauer MC: Deletion mutagenesis of p22phox subunit of flavocytochrome b558: identification of regions critical for gp91phox maturation and NADPH oxidase activity. Journal of Biological Chemistry. 2006, 281 (41): 30336-30346. 10.1074/jbc.M607191200.

NCBI-HomoloGene. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=homologene]

NCBI-Sea-Urchin-Genome-Database. [http://www.ncbi.nlm.nih.gov/genome/seq/BlastGen/BlastGen.cgi?taxid=7668]

NCBI-Eukaryote-Genome-Database. [http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=euk]

DictyBase-BLAST-server. [http://dictybase.org/db/cgi-bin/blast.pl]

TIGR-Arabidopsis-thaliana-Protein-Database. [http://tigrblast.tigr.org/er-blast/index.cgi?project=ath1]

Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research. 1994, 22 (22): 4673-4680. 10.1093/nar/22.22.4673.

Clustal W: [http://http//www.ddbj.nig.ac.jp/search/clustalw-j.html]

Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987, 4 (4): 406-425.

Sitnikova T, Rzhetsky A, Nei M: Interior-branch and bootstrap tests of phylogenetic trees. Mol Biol Evol. 1995, 12 (2): 319-333.

Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution. 1980, 16 (2): 111-120. 10.1007/BF01731581.

Felsenstein J: Estimating effective population size from samples of sequences: a bootstrap Monte Carlo integration method. Genetical Research. 1992, 60 (3): 209-220.

Ensembl-AlignSliceView-program. [http://www.ensembl.org/Homo_sapiens/alignsliceview]

Hubbard T, Andrews D, Caccamo M, Cameron G, Chen Y, Clamp M, Clarke L, Coates G, Cox T, Cunningham F: Ensembl 2005. Nucleic Acids Research. 2005, D447-453. 33 Database

Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research. 2003, 31 (13): 3381-3385. 10.1093/nar/gkg520.

Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997, 18 (15): 2714-2723. 10.1002/elps.1150181505.

Hedges SB: The origin and evolution of model organisms. Nature Reviews Genetics. 2002, 3 (11): 838-849. 10.1038/nrg929.

Burritt JB, Quinn M, Jutila MA, Bond CW, Jesaitis AJ: Topological mapping of neutrophil cytochrome b epitopes with phage-display libraries. Journal of Biological Chemistry. 1995, 270: 16974-16980. 10.1074/jbc.270.28.16974.

Jesaitis AJ, Buescher ES, Harrison D, Quinn MT, Parkos CA, Livesey S, Linner J: Ultrastructural localization of cytochrome b in the membranes of resting and phagocytosing human granulocytes. Journal of Clinical Investigation. 1990, 85 (3): 821-835.