Molecular evolution of the crustacean hyperglycemic hormone family in ecdysozoans
Tóm tắt
Crustacean Hyperglycemic Hormone (CHH) family peptides are neurohormones known to regulate several important functions in decapod crustaceans such as ionic and energetic metabolism, molting and reproduction. The structural conservation of these peptides, together with the variety of functions they display, led us to investigate their evolutionary history. CHH family peptides exist in insects (Ion Transport Peptides) and may be present in all ecdysozoans as well. In order to extend the evolutionary study to the entire family, CHH family peptides were thus searched in taxa outside decapods, where they have been, to date, poorly investigated. CHH family peptides were characterized by molecular cloning in a branchiopod crustacean, Daphnia magna, and in a collembolan, Folsomia candida. Genes encoding such peptides were also rebuilt in silico from genomic sequences of another branchiopod, a chelicerate and two nematodes. These sequences were included in updated datasets to build phylogenies of the CHH family in pancrustaceans. These phylogenies suggest that peptides found in Branchiopoda and Collembola are more closely related to insect ITPs than to crustacean CHHs. Datasets were also used to support a phylogenetic hypothesis about pancrustacean relationships, which, in addition to gene structures, allowed us to propose two evolutionary scenarios of this multigenic family in ecdysozoans. Evolutionary scenarios suggest that CHH family genes of ecdysozoans originate from an ancestral two-exon gene, and genes of arthropods from a three-exon one. In malacostracans, the evolution of the CHH family has involved several duplication, insertion or deletion events, leading to neuropeptides with a wide variety of functions, as observed in decapods. This family could thus constitute a promising model to investigate the links between gene duplications and functional divergence.
Từ khóa
#Evolutionary Biology #Animal Systematics/Taxonomy/Biogeography #Entomology #Genetics and Population Dynamics #Life Sciences #generalTài liệu tham khảo
Angelini DR, Kaufman TC: Comparative developmental genetics and the evolution of arthropod body plans. Annu Rev Genet. 2005, 39: 95-119. 10.1146/annurev.genet.39.073003.112310.
Böcking D, Dircksen H, Keller R: The crustacean neuropeptides of the CHH/MIH/GIH family: structures and biological activities. The Crustacean Nervous System. Edited by: Wiese K. 2002, Berlin, Heidelberg, New York: Springer, 84-97.
Chen SH, Lin CY, Kuo CM: In silico analysis of crustacean hyperglycemic hormone family. Mar Biotechnol (NY). 2005, 7 (3): 193-206. 10.1007/s10126-004-0020-5.
Soyez D: Recent data on the crustacean hyperglycemic hormone family. Recent Advances in Marine Biotechnology. Edited by: Fingerman M, Nagabhushanam R. 2003, Plymouth, U.K.: Science Publishers, 10: 279-301.
Lacombe C, Grève P, Martin G: Overview on the sub-grouping of the crustacean hyperglycemic hormone family. Neuropeptides. 1999, 33 (1): 71-80. 10.1054/npep.1999.0016.
Fanjul-Moles ML: Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comp Biochem Physiol C Toxicol Pharmacol. 2006, 142 (3-4): 390-400. 10.1016/j.cbpc.2005.11.021.
Chen SH, Lin CY, Kuo CM: Cloning of two crustacean hyperglycemic hormone isoforms in freshwater giant prawn (Macrobrachium rosenbergii): evidence of alternative splicing. Mar Biotechnol (NY). 2004, 6 (1): 83-94. 10.1007/s10126-003-0014-8.
Dircksen H, Böcking D, Heyn U, Mandel C, Chung JS, Baggerman G, Verhaert P, Daufeldt S, Plosch T, Jaros PP, et al: Crustacean hyperglycaemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes. Biochem J. 2001, 356 (1): 159-170. 10.1042/0264-6021:3560159.
Tiu SH, He JG, Chan SM: The LvCHH-ITP gene of the shrimp (Litopenaeus vannamei) produces a widely expressed putative ion transport peptide (LvITP) for osmo-regulation. Gene. 2007, 396 (2): 226-235. 10.1016/j.gene.2007.02.027.
Webster SG: Neuropeptides inhibiting growth and reproduction in crustaceans. Recent Advances in Arthropod Endocrinology. Edited by: Coast GM, Webster SG. 1998, Cambridge, U.K.: Cambridge University Press, 33-52.
Montagné N, Soyez D, Gallois D, Ollivaux C, Toullec JY: New insights into evolution of crustacean hyperglycaemic hormone in decapods - first characterization in Anomura. FEBS J. 2008, 275 (5): 1039-1052. 10.1111/j.1742-4658.2007.06245.x.
Grève P, Sorokine O, Berges T, Lacombe C, Van Dorsselaer A, Martin G: Isolation and amino acid sequence of a peptide with vitellogenesis inhibiting activity from the terrestrial isopod Armadillidium vulgare (Crustacea). Gen Comp Endocrinol. 1999, 115 (3): 406-414. 10.1006/gcen.1999.7330.
Martin G, Sorokine O, Van Dorsselaer A: Isolation and molecular characterization of a hyperglycemic neuropeptide from the sinus gland of the terrestrial isopod Armadillidium vulgare (Crustacea). Eur J Biochem. 1993, 211 (3): 601-607. 10.1111/j.1432-1033.1993.tb17587.x.
Dircksen H: Insect ion transport peptides are derived from alternatively spliced genes and differentially expressed in the central and peripheral nervous system. J Exp Biol. 2009, 212 (3): 401-412. 10.1242/jeb.026112.
Zhang Q, Keller R, Dircksen H: Crustacean hyperglycaemic hormone in the nervous system of the primitive crustacean species Daphnia magna and Artemia salina (Crustacea: Branchiopoda). Cell Tiss Res. 1997, 287 (3): 565-576. 10.1007/s004410050779.
Laverdure AM, Carette-Desmoucelles C, Breuzet M, Descamps M: Neuropeptides and related nucleic acid sequences detected in peneid shrimps by immunohistochemistry and molecular hybridizations. Neuroscience. 1994, 60 (2): 569-579. 10.1016/0306-4522(94)90265-8.
Stockmann R, Laverdure AM, Breuzet M: Localization of a crustacean hyperglycemic hormone-like immunoreactivity in the neuroendocrine system of Euscorpius carpathicus (L.) (Scorpionida, Chactidae). Gen Comp Endocrinol. 1997, 106 (3): 320-326. 10.1006/gcen.1997.6874.
Carapelli A, Liò P, Nardi F, Wath van der E, Frati F: Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea. BMC Evol Biol. 2007, 7 (suppl2 S8): 2-13.
Cook CE, Yue Q, Akam M: Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. Proc R Soc B. 2005, 272: 1295-1304. 10.1098/rspb.2004.3042.
Hassanin A: Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol. 2006, 38: 100-106. 10.1016/j.ympev.2005.09.012.
Mallatt J, Giribet G: Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Phylogenet Evol. 2006, 40: 772-794. 10.1016/j.ympev.2006.04.021.
Timmermans MJ, Roelofs D, Marien J, van Straalen NM: Revealing pancrustacean relationships: phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers. BMC Evol Biol. 2008, 8: 83-10.1186/1471-2148-8-83.
Regier JC, Shultz JW, Kambic RE: Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc R Soc B. 2005, 272: 395-401. 10.1098/rspb.2004.2917.
Abramowitz RK, Abramowitz AA: Moulting, growth, and survival after eyestalk removal in Uca pugilator. Biol Bull. 1940, 78: 179-188. 10.2307/1537771.
Brown FA, Cunningham O: Influence of the sinusgland of crustaceans on normal viability and ecdysis. Biol Bull. 1939, 77: 104-114. 10.2307/1537849.
Smith RI: Studies on the effects of eyestalk removal upon young crayfish (Cambarus clarkii, Girard). Biol Bull. 1940, 79: 145-152. 10.2307/1537835.
Gu PL, Yu KL, Chan SM: Molecular characterization of an additional shrimp hyperglycemic hormone: cDNA cloning, gene organization, expression and biological assay of recombinant protein. FEBS Lett. 2000, 472: 122-128. 10.1016/S0014-5793(00)01420-4.
Ohno S: Evolution by Gene Duplication. Berlin, Heidelberg. 1970, New York: Springer-Verlag
Zhang J: Evolution by gene duplication: an update. Trends Ecol Evol. 2003, 18 (6): 292-298. 10.1016/S0169-5347(03)00033-8.
Hughes AL: The evolution of functionally novel proteins after gene duplication. Proc R Soc B. 1994, 256 (1346): 119-124. 10.1098/rspb.1994.0058.
Lynch M, Force A: The probability of duplicate gene preservation by subfunctionalization. Genetics. 2000, 154 (1): 459-473.
Lu W, Wainwright G, Webster SG, Rees HH, Turner PC: Clustering of mandibular organ-inhibiting hormone and moult-inhibiting hormone genes in the crab, Cancer pagurus, and implications for regulation of expression. Gene. 2000, 253 (2): 197-207. 10.1016/S0378-1119(00)00282-1.
Chang ES, Bruce MJ, Newcomb RW: Purification and amino acid composition of a peptide with molt-inhibiting activity from the lobster Homarus americanus. Gen Comp Endocrinol. 1987, 65: 56-64. 10.1016/0016-6480(87)90222-X.
Gard AL, Lenz PH, Shaw JR, Christie AE: Identification of putative peptide paracrines/hormones in the water flea Daphnia pulex (Crustacea; Branchiopoda; Cladocera) using transcriptomics and immunohistochemistry. Gen Comp Endocrinol. 2009, 160 (3): 271-287. 10.1016/j.ygcen.2008.12.014.
King DS, Meredith J, Wang YJ, Phillips JE: Biological actions of synthetic locust ion transport peptide (ITP). Insect Biochem Mol Biol. 1999, 29: 11-18. 10.1016/S0965-1748(98)00098-8.
Phillips JE, Meredith J, Audsley N, Richardson N, Macins A, Ring M: Locust ion transport peptide (ITP): A putative hormone controlling water and ionic balance in terrestrial insects. Amer Zool. 1998, 38 (3): 461-470.
Eads BD, Andrews J, Colbourne JK: Ecological genomics in Daphnia: stress responses and environmental sex determination. Heredity. 2008, 100 (2): 184-190. 10.1038/sj.hdy.6800999.
Keller R, Kegel G, Reichwein B, Sedlmeier D, Soyez D: Biological effects of neurohormones of the CHH/MIH/GIH peptide family in crustaceans. Recent Developments in Comparative Endocrinology and Neurobiology. Edited by: Roubos EW, Wendelaar Bonga SE, Vaudry H, De Loof A. 1999, Nijmegen: Shaker, 209-212.
Laufer H, Johnson M, Demir N, Twidy K, Chang E, Soyez D, Van Herp F, Bagshaw J: Identification of lobster hyperglycemic hormones (CHHs) with mandibular organ inhibiting activity. SICB Annual Meeting: 2003; Toronto, Canada. 2003
Wainwright G, Webster SG, Wilkinson MC, Chung JS, Rees HH: Structure and significance of mandibular organ-inhibiting hormone in the crab, Cancer pagurus - Involvement in multihormonal regulation of growth and reproduction. J Biol Chem. 1996, 271 (22): 12749-12754. 10.1074/jbc.271.22.12749.
Christie AE, Cashman CR, Brennan HR, Ma M, Sousa GL, Li L, Stemmler EA, Dickinson PS: Identification of putative crustacean neuropeptides using in silico analyses of publicly accessible expressed sequence tags. Gen Comp Endocrinol. 2008, 156 (2): 246-264. 10.1016/j.ygcen.2008.01.018.
Marco HG, Gäde G: Biological activity of the predicted red pigment-concentrating hormone of Daphnia pulex in a crustacean and an insect. Gen Comp Endocrinol. 2010, 166 (1): 104-110. 10.1016/j.ygcen.2009.08.002.
Dai L, Zitnan D, Adams ME: Strategic expression of ion transport peptide gene products in central and peripheral neurons of insects. J Comp Neurol. 2007, 500: 353-367. 10.1002/cne.21192.
Dircksen H, Tesfai LK, Albus C, Nassel DR: Ion transport peptide splice forms in central and peripheral neurons throughout postembryogenesis of Drosophila melanogaster. J Comp Neurol. 2008, 509 (1): 23-41. 10.1002/cne.21715.
Cameron SL, Miller KB, D'Haese CA, Whiting MF, Barker SC: Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). Cladistics. 2004, 20: 534-557. 10.1111/j.1096-0031.2004.00040.x.
Delsuc F, Phillips MJ, Penny D: Comment on "Hexapod origins: monophyletic or paraphyletic?". Science. 2003, 301: 1482-10.1126/science.1086558.
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003, 19: 1572-1574. 10.1093/bioinformatics/btg180.
Goldman N, Yang Z: A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994, 11: 725-736.
Muse SV, Gaut BS: A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol. 1994, 11: 715-724.
Shapiro B, Rambaut A, Drummond AJ: Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol. 2006, 23 (1): 7-9. 10.1093/molbev/msj021.
Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001, 18 (5): 691-699.
Abascal F, Zardoya R, Posada D: ProtTest: Selection of best-fit models of protein evolution. Bioinformatics. 2005, 21: 2104-2105. 10.1093/bioinformatics/bti263.
Guindon S, Gascuel O: A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol. 2003, 52 (5): 696-704. 10.1080/10635150390235520.
Kishino H, Hasegawa M: Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989, 29 (2): 170-179. 10.1007/BF02100115.
Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. 2009, Version 2.6, [http://mesquiteproject.org]
Tsutsui N, Ohira T, Kawazoe I, Takahashi A, Wilder MN: Purification of sinus gland peptides having vitellogenesis-inhibiting activity from the whiteleg shrimp Litopenaeus vannamei. Mar Biotechnol (NY). 2007, 9 (3): 360-369. 10.1007/s10126-006-6151-0.