Mô hình dịch tễ học phân tử và động lực học lây truyền của các chủng lao đa kháng thuốc bằng cách sử dụng giải trình tự gen toàn bộ tại vùng Amhara, Ethiopia

Springer Science and Business Media LLC - Tập 24 - Trang 1-14 - 2023
Agumas Shibabaw1,2,3,4,5, Baye Gelaw3, Mostafa Ghanem6, Noah Legall7, Angie M. Schooley4, Marty K. Soehnlen4, Liliana C.M. Salvador8, Wondwossen Gebreyes2,5, Shu-Hua Wang2,9, Belay Tessema3
1Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
2Global One Health Initiative (GOHi), The Ohio State University, Columbus, USA
3Department of Medical Microbiology, School of Medical Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
4Michigan Department of Health and Human Services, Lansing, USA
5Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, USA
6Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, USA
7Institute of Bioinformatics, University of Georgia, Athens, USA
8School of Animal and Comparative Biomedical Sciences, College of Agriculture and life sciences, University of Arizona, Tucson, USA
9Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, The Ohio State University, Columbus, USA

Tóm tắt

Việc phòng ngừa và điều trị Mycobacterium tuberculosis kháng thuốc là một thách thức lớn ở Ethiopia. Tổ chức Y tế Thế giới đã xác định Ethiopia là một trong 30 quốc gia có gánh nặng lao đa kháng thuốc (MDR-TB) cao. Có rất ít thông tin liên quan đến tính đa dạng di truyền và động lực lây truyền của MDR-TB ở Ethiopia. Nghiên cứu này nhằm điều tra dịch tễ học phân tử và động lực lây truyền của các chủng MDR-TB bằng cách sử dụng giải trình tự gen toàn bộ (WGS) ở vùng Amhara. Bốn mươi lăm mẫu phân lập MDR-TB lâm sàng từ vùng Amhara đã được thu thập từ năm 2016 đến năm 2018 và được phân tích bằng WGS và kiểu gen 24-loci Mycobacterium Interspersed Repetitive Units Variable Number of Tandem Repeats (MIRU-VNTR). Các cụm được xác định dựa trên khoảng cách tối đa của 12 biến thể đơn nucleotide (SNPs) hoặc alen như là ngưỡng cao nhất của mối liên hệ di truyền. Khoảng cách 5 SNP hoặc alen hoặc kiểu gen 24-loci VNTR giống hệt nhau được chỉ định là dấu hiệu thay thế cho lây truyền gần đây. Bốn mươi mốt trong số 45 mẫu đã được phân tích bằng WGS và 44% (18/41) trong số các mẫu này được phân vào 4 cụm. Trong số 41 mẫu MDR-TB, 58,5% được phân loại là dòng 4, 36,5% dòng 3 và 5% dòng 1. Tổng thể, kiểu gen TUR (54%) là kiểu gen nổi bật trong các chủng MDR-TB. 41% (17/41) các mẫu được phân cụm thành bốn nhóm WGS và các mẫu còn lại là các chủng duy nhất. Cụm nổi bật nhất (Cụm 1) bao gồm chín mẫu thuộc dòng 4 và trong số này, bốn mẫu nằm trong các liên kết lây truyền gần đây. Đa phần các cụm chủng MDR-TB và sự chiếm ưu thế của dòng TUR ở vùng Amhara dấy lên lo ngại về khả năng lây truyền đang diễn ra. Cần có các nỗ lực tăng cường hệ thống phòng thí nghiệm lao để nâng cao chẩn đoán, tích cực tìm kiếm trường hợp bệnh và mở rộng các hoạt động truy vết tiếp xúc nhằm cải thiện chẩn đoán nhanh và bắt đầu điều trị sớm. Điều này sẽ dẫn đến việc ngắt quãng chuỗi lây truyền và ngăn chặn sự lây lan của MDR-TB ở vùng Amhara.

Từ khóa

#MDR-TB #dịch tễ học phân tử #giải trình tự gen toàn bộ #vùng Amhara #Ethiopia

Tài liệu tham khảo

Jabbar A, Phelan JE, de Sessions PF, Khan T, Rahman H, Khan SN, et al. Whole genome sequencing of drug resistant Mycobacterium tuberculosis isolates from a high burden tuberculosis region of North West Pakistan. Sci Rep. 2019;9:14996. https://doi.org/10.1038/s41598-019-51562-6. World Health Organization. Global tuberculosis report 2021. 2021. World Health Organization. WHO announces updated definitions of extensively drug-resistant tuberculosis. 2021:https://www.who.int/news/item/27-01-2021-who-announces-updated-definitions-of-extensively-drug-resistant-tuberculosis. Access on August, 20, 2022. Menzies D, Benedetti A, Paydar A, Royce S, Pai M, Burman W, et al. Standardized treatment of active tuberculosis in patients with previous treatment and/or with monoresistance to isoniazid: a systematic review and meta-analysis. PLoS Med. 2009;6:e1000150. da Garrido S, Bührer-Sékula M, Souza S, de Oliveira AB, Antunes GP, Mendes A. Multidrug-resistant tuberculosis in the Amazonas State, Brazil, 2000–2011. Int J Tuberc Lung Dis. 2015;19:531–6. Li Y, Ehiri J, Oren E, Hu D, Luo X, Liu Y, et al. Are we doing enough to Stem the Tide of Acquired MDR-TB in Countries with High TB Burden? Results of a mixed method study in Chongqing, China. PLoS ONE. 2014;9(2):e88330. Lukoye D, Adatu F, Musisi K, Kasule GW, Were W, Odeke R, et al. Anti-Tuberculosis Drug Resistance among New and previously treated Sputum SmearPositive Tuberculosis Patients in Uganda: results of the First National Survey. PLoS ONE. 2013;8(8):e70763. Kendall EA, Fofana MO, Dowdy DW. The burden of transmitted multi-drug resistance among epidemics of tuberculosis: a transmission model. Lancet Respir Med. 2015;3(12):963–72. Suen S-c, Goldhaber-Fiebert BE. Disease Control Implications of India’s changing Multi-Drug resistant tuberculosis epidemic. PLoS ONE. 2014;9(3):e89822. Kodama C, Lange B, Olaru ID, Khan P, Lipman M, Seddon JA, et al. Mycobacterium tuberculosis transmission from patients with drug-resistant compared to drug-susceptible TB: a systematic review and meta-analysis. Eur Respir J. 2017;50:1701044. Coll F, McNerney R, Guerra-Assunc¸a˜o JA, Glynn JR, Perdiga˜o J, Viveiros M, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun. 2014;5:4812. Gagneux S. Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci. 2012;367:850–9. Nebenzahl-Guimaraes H, Yimer SA, Holm-Hansen C, de Beer J, Brosch R, Soolingen D. Genomic characterization of Mycobacterium tuberculosis lineage 7 and a proposed name: ‘Aethiops vetus’. Microb Genom. 2016;2(6):e000063. Lo´pez B, et al. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol. 2003;133:30–7. Ford CB, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet. 2013;45:784–90. Kato-Maeda M, Kim E. Differences among sublineages of the East-Asian lineage of Mycobacterium tuberculosis in genotypic clustering. Int J Tuberc Lung Dis. 2010;14:538–44. Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I, et al. Evolution and transmission of drug-resistant tuberculosis in a russian population. Nat Genet. 2014;46:279–86. Niemann S, Supply P. Diversity and evolution of Mycobacterium tuberculosis: moving to whole-genome-based approaches. Cold Spring Harb Perspect Med. 2014;4:a021188. Agonafir M, Lemma E, Wolde-Meskel D, Goshu S, Santhanam A, Girmachew F, et al. Phenotypic and genotypic analysis of multidrug-resistant tuberculosis in Ethiopia. Int J Tuberc Lung Dis. 2010;14(10):1259–65. Diriba B, Berkessa T, Mamo G, Tedla Y, Ameni G. Spoligotyping of multidrug-resistant Mycobacterium tuberculosis isolates in Ethiopia. Int J Tuberc Lung Dis. 2013;17(2):246–50. Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol. 2000;36:762–71. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103:2869–73. Jones RC, Harris LG, Morgan S, Ruddy MC, Perry M, Williams R, et al. Phylogenetic analysis of Mycobacterium tuberculosis strains in Wales by Use of Core Genome Multilocus sequence typing to analyze whole-genome sequencing data. J Clin Microbiol. 2019;57(6):e02025–18. https://doi.org/10.1128/JCM.-18. Kohl TA, Diel R, Harmsen D, Rothgänger J, Walter KM, Merker M, et al. Whole-genome-based Mycobacterium tuberculosis surveillance: a standardized, portable, and expandable approach. J Clin Microbiol. 2014;52(7):2479–86. https://doi.org/10.1128/JCM.00567-14. Zozio T, Allix C, Gunal S, Saribas Z, Alp A, et al. Genotyping of Mycobacterium tuberculosis clinical isolates in two cities of Turkey: description of a new family of genotypes that is phylogeographically specific for Asia Minor. BMC Microbiol. 2005;5:44. Kisa O, Tarhan G, Gunal S, Albay A, Durmaz R, Saribas Z, et al. Distribution of Spoligotyping defined genotypic lineages among drug-resistant Mycobacterium tuberculosis Complex Clinical isolates in Ankara, Turkey. PLoS ONE. 2012;7(1):e30331. Comas I, Hailu E, Kiros T, Bekele S, Mekonnen W, Gumi B, et al. Population Genomics of Mycobacterium tuberculosis in Ethiopia contradicts the virgin Soil Hypothesis for Human Tuberculosis in Sub-Saharan Africa. Curr Biol. 2015;25:3260–6. Tessema B, Beer J, Merker M, Emmrich F, Sack U, Rodloff AC, et al. Molecular epidemiology and transmission dynamics of Mycobacterium tuberculosis in Northwest Ethiopia: new phylogenetic lineages found in Northwest Ethiopia. BMC Infect Dis. 2013;13:131. Shibabaw A, Gelaw B, Gebreyes W, Robinson R, Wang S-H, Tessema B. The burden of pre-extensively and extensively drugresistant tuberculosis among MDR-TB patients in the Amhara region, Ethiopia. PLoS ONE. 2020;15(2):e0229040. van Embden IDA, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicoquel B, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;31:406–9. de Beer JL, Kremer K, Ködmön C, Supply P, van Soolingen D, Global Network for the Molecular Surveillance of Tuberculosis. 2009. First worldwide proficiency study on variablenumber tandem-repeat typing of Mycobacterium tuberculosis complex strains. J Clin Microbiol. 2012;50:662-9. Allix-Béguec C, Harmsen D, Weniger T, Supply P, Niemann S. Evaluation and user-strategy of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol. 2008;46(8):2692–9. Glynn JR, Vynnycky E, Fine PEM. Influence of sampling on estimates of clustering and recent transmission of Mycobacterium tuberculosis derived from DNA fingerprinting techniques. Am J Epidemiol. 1999;149:366–71. Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of numerical index of the discriminatory ability of typing systems : an application of Simpson’s index of diversity. J Clin Microbiol. 1988;26:2465–6. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform Bioinformatics (Oxford, England). 2009;25(14):1754–60. doi:10.093/bioinformatics/btp324. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis Toolkit: a Map reduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. https://doi.org/10.101/gr.107524.110. Van der Auwera GA, Carneiro MC, Hartl C, Poplin R, DelAngel G, Levy-Moonshine A, et al. From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protocols Bioinf. 2013;43(11):1–33. Brennan M. The enigmatic PE/PPE Multigene Family of Mycobacteria and Tuberculosis Vaccination. Infect Immun. 2017;85(6):1–8. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907 [q-bio.GN] 2012. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6. https://doi.org/10.1038/nbt.754. Stamatakis A. Bioinf (Oxford England). 2014;30(9):1312–3. 10.093/bioinformatics/btu033. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Kohl TA, Harmsen D, Rothgänger J, Walker T, Diel R, Niemann S. Harmonized genome wide typing of Tubercle Bacilli using a web-based Gene-By-Gene nomenclature system. EBioMedicine. 2018;34:131–8. https://doi.org/10.1016/j.ebiom.2018.07.030. Hamming RW. Error detecting and error correcting codes. Bell Syst Technol J. 1950;29(2). Walker TM, CIp CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis. 2013;13:137–46. Coll F, McNerney R, Preston MD, Guerra-Assunção JA, Warry A, Hill-Cawthorne G, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 2015;7:51. Feuerriegel S, Schleusener V, Beckert P, Kohl TA, Miotto P, Cirillo DM, et al. PhyResSE: web tool delineating Mycobacterium tuberculosis antibiotic resistance and lineage from whole-genome sequencing data. J Clin Microbiol. 2015;53(6):1908–14. Barnes PF, Yang Z, Preston-Martin S, Pogoda JM, Jones BE. Patterns of tuberculosis transmission in Central Los Angeles. JAMA. 1997;278:1159–63. Al-Ghafli H, Kohl TA, Merker M, Varghese B, Halees A, Niemann S, et al. Drug-resistance profiling and transmission dynamics of multidrug-resistant Mycobacterium tuberculosis in Saudi Arabia revealed by whole genome sequencing. Infect Drug Resist. 2018;11:2219–29. Durmaz R, Zozio T, Gunal S, Yaman A, Cavusoglu C, et al. Genetic diversity and major spoligotype families of drug-resistant Mycobacterium tuberculosis clinical isolates from different regions of Turkey. Infect Genet Evol. 2007;7:513–9. Bouzouita I, Cabibbe AM, Trovato A, Daroui H, Ghariani A, Midouni B, et al. Whole-genome sequencing of drug-resistant Mycobacterium tuberculosis strains, Tunisia, 2012–2016. Emerg Infect Dis. 2019;25(3):547–50. Wyllie DH, Davidson JA, Smith EG, Rathod P, Crook DW, Peto TEA, et al. A quantitative evaluation of MIRU-VNTR typing against whole-genome sequencing for identifying Mycobacterium tuberculosis transmission: a prospective Observational Cohort Study. EBioMedicine. 2018;34:122–30. Varghese B, Shoukri M, Memish Z, Abuljadaye N, Alhakeem R, Alrabiah F, et al. Occurrence of diverse mutations in Isoniazidand Rifampicin-Resistant Mycobacterium tuberculosis isolates from Autochthonous and immigrant populations of Saudi Arabia. Microb drug Resist. 2014;20:6DOI. https://doi.org/10.1089/mdr.2014.0065. Wang F, Shao L, Fan X, Shen Y, Diao N, Jin J, et al. Evolution and transmission patterns of extensively drug-resistant tuberculosis in China. Antimicrob Agents Chemother. 2015;59:818–25. https://doi.org/10.1128/AAC.03504-14. Devaux I, Kremer K, Heersma H, van Soolingen D. Clusters of Multidrug-Resistant Mycobacterium tuberculosis cases, Europe. Emerg Infect Dis. 2009;15(7):1052–62. Anderson LF, Tamne S, Brown T, Watson JP, Mullarkey C, Zenner D, et al. Transmission of multidrug-resistant tuberculosis in the UK: a cross-sectional molecular and epidemiological study of clustering and contact tracing. Lancet Infect Dis. 2014;14(5):406–15. Metcalfe JZ, Kim EY, Lin SG, Cattamanchi A, Oh P, Flood J, et al. Determinants of Multidrug-Resistant tuberculosis clusters, California, USA, 2004–2007. Emerg Infect Dis. 2010;16(9):1403–09. Oppong YEA, Phelan J, Perdigão J, Machado D, Miranda A, Portugal I, et al. Genome-wide analysis of Mycobacterium tuberculosis polymorphisms reveals lineage-specific associations with drug resistance. BMC Genomics. 2019;20:252. Mekonnen D, Derbie A, Chanie A, Shumete A, Biadglegne F, Kassahun Y, et al. Molecular epidemiology of M. tuberculosis in Ethiopia: a systematic review and meta-analysis. Tuberculosis. 2018;118:101858. Panossian B, Salloum T, Araj GF, Khazen G, Tokajian S. First insights on the genetic diversity of MDR Mycobacterium tuberculosis in Lebanon. BMC Infect Dis. 2018;18:710. Engström A, Antonenka U, Kadyrov A, Kalmambetova G, Kranzer K, Merker M, et al. Population structure of drug-resistant Mycobacterium tuberculosis in Central Asia. BMC Infect Dis. 2019;19:908. Wollenberg KR, Desjardins CA, Zalutskaya A, Slodovnikova V, Oler AJ, Quiñones M, et al. Whole-genome sequencing of Mycobacterium tuberculosis provides insight into the evolution and genetic composition of drug-resistant tuberculosis in Belarus. J Clin Microbiol. 2017;55(2):457–69. Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet. 2016;48(12):1535–43.