Molecular differentiation of the Murraya paniculata Complex (Rutaceae: Aurantioideae: Aurantieae)

Springer Science and Business Media LLC - Tập 19 - Trang 1-16 - 2019
Chung Huy Nguyen1,2, G. Andrew C. Beattie2, Anthony M. Haigh2, Inggit Puji Astuti3, David J. Mabberley4,5,6, Peter H. Weston4, Paul Holford2
1Plant Protection Research Institute, Hà Nội, Việt Nam
2School of Science, Western Sydney University, Penrith, Australia
3Bogor Botanic Garden, Paledang, Bogor, Indonesia
4National Herbarium of New South Wales, Royal Botanic Garden, Sydney, Australia
5Wadham College, University of Oxford, Oxford, UK
6Department of Biological Sciences, Macquarie University, Sydney, Australia

Tóm tắt

Orange jasmine has a complex nomenclatural history and is now known as Murraya paniculata (L.) Jack. Our interest in this common ornamental stemmed from the need to resolve its identity and the identities of closely related taxa as hosts of the pathogen ‘Candidatus Liberibacter asiaticus’ and its vector Diaphorina citri. Understanding these microbe-vector-plant relationships has been hampered by taxonomic confusion surrounding Murraya at both the generic and specific levels. To resolve the taxonomic uncertainty, six regions of the maternally-inherited chloroplastal genome and part of the nuclear-encoded ITS region were amplified from 85 accessions of Murraya and Merrillia using the polymerase chain reaction (PCR). Clustering used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI). Chronograms were produced for molecular dating, and to test the monophyly of Murraya rigorously, using selected accessions of Murraya and 26 accessions of the Rutaceae and Simarubaceae. Sequence data from the ITS and chloroplastal regions suggest that Murraya paniculata (sensu (Swingle WT and Reece CR, The Citrus Industry, p. 190–430, 1967)) can be separated into four distinct but morphologically somewhat cryptic taxa: Murraya paniculata (sensu (Mabberley DJ, Taxon 65:366–371, 2016)), M. elongata, M. sumatrana and M. lucida. In addition, Murraya omphalocarpa was identified as a putative hybrid of M. paniculata and M. lucida with two geographically isolated nothovarieties representing reciprocal crosses. Murraya is monophyletic, and molecular dating suggests that it diverged from Merrillia during the Miocene (23–5 Ma) with this Murraya group speciating and dispersing during the Middle Miocene onwards. The accessions from Asia and Australasia used in this study grouped into biogeographical regions that match herbarium specimen records for the taxa that suggest natural allopatric distributions with limited overlap and hybridity. Murraya paniculata has been distributed around the world as an ornamental plant. The division of the Murraya paniculata complex into four species with a rare hybrid also confirms morphological studies.

Tài liệu tham khảo

Mabberley DJ. The typification of Murraya, M. exotica, and M. paniculata (Rutaceae): its significance for the world citrus industry. Taxon. 2016;65(2):366–71. Mabberley DJ. (2433) proposal to conserve the name Chalcas paniculata (Murraya paniculata) (Rutaceae) with a conserved type. Taxon. 2016;65(2):394–5. Swingle WT, Reece CR. The botany of Citrus and its wild relatives. In: Reuther W, Webber HJ, Batchelor LD, editors. The Citrus Industry. Berkeley: Division of Agricultural Sciences, University of California; 1967. p. 190–430. Rumphius GE. Herbarium Amboinense, vol. 5. Amsterdam: M. Uytwerf after Amsterdam; 1747. Jack W. Descriptions of Malayan plants. Malayan Miscellanies. 1820;1:31–3. Burkill IH. A dictionary of economic products of the Malay peninsula. London: Crown Agent for the Colonies; 1935. Aziz S, Sukari M, Rahmani M, Kitajima M, Aimi N, Ahpandi N. Coumarins from Murraya paniculata (Rutaceae). Malaysian J Analytical Sci. 2010;14(1):1–5. Kong YC, Cheng KF, Ng KH, But PPH. Qianli, Yu SX, Chang HT, Cambie RC, Kinoshita T, Kan WS et al: a chemotaxonomic division of Murraya based on the distribution of the alkaloids yuehchukene and girinimbine. Biochem Syst Ecol. 1986;14(5):491–7. Bitters W, Brusca J, Cole D. The search for new citrus rootstocks. California Citrograph. 1964;49:443–8. Bové JM. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol. 2006;88(1):7–37. Halbert SE, Manjunath KL. Asian citrus psyllids (Sternorrhyncha : Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Fla Entomol. 2004;87(3):330–53. Li T, Ke C. Detection detection of the bearing rate of Liberobacter asiaticum in the citrus psylla and its host plant Murraya paniculata by nested PCR. Acta Phytophylacica Sinica. 2002;29:31–5. Lopes SA. Huanglongbing in Brazil. In: International Workshop for the Prevention of Citrus Greening Disease in Severely Infected Areas, Ishigaki, Japan, 6–7 December 2006. Tokyo: Multilateral Research Network for Food and Agricultural Safety. Japanese Ministry of Agriculture, Forestry and Fisheries; 2006. p. 11-9. Zhou LJ, Gabriel DW, Duan YP, Halbert SE, Dixon WN. First report of dodder transmission of Huanglongbing from naturally infected Murraya paniculata to Citrus. Plant Dis. 2007;91(2):227. Walter AJ, Duan Y, Hall DG. Titers of ‘Ca. Liberibacter asiaticus’ in Murraya paniculata and Murraya-reared Diaphorina citri are much lower than in Citrus and Citrus-reared psyllids. HortScience. 2012;47(10):1449–52. Miyakawa T. Experimentally-induced symptoms and host range of citrus likubin (greening disease). Ann Phytopathol Soc Jpn. 1980;46:224–30. Garnier M, Bové JM. Citrus greening disease and the greening bacterium. In: Moreno P, da Graça JV, Timmer LW, editors. Proceedings of the Twelfth Conference of the International Organization of Citrus Virologists, New Delhi, India, 23-27 November 1992. Riverside: International Organization of Citrus Virologists, University of California, Riverside; 1993. p. 212-9. Dai K, Ikeshiri T, Matsuura T, Kimura S, Hamagami A, Fujiwara Y, Kobashigawa Y, Miyakuni S. Investigation of host range of Candidatus Liberibacter asiaticum—is Murraya paniculata a host plant of Candidatus L. asiaticum? Res Bull Plant Protection Serv(Japan). 2005;41:53–7. Cifuentes-Arenas JC, Beattie GAC, Pena L, Lopes SA. Murraya paniculata and Swinglea glutinosa as short-term transient hosts of 'Candidatus Liberibacter asiaticus' and implications for spread of huanglongbing. Phytopathology. 2019;109(12):2067-73. https://doi.org/10.1094/PHYTO-06-19-0216-R. de Araújo EF, de Queiroz LP, Machado MA. What is Citrus? Taxonomic implications from a study of cp-DNA evolution in the tribe Citreae (Rutaceae subfamily Aurantioideae). Org Divers Evol. 2003;3:55–62. Morton CM, Grant M, Blackmore S. Phylogenetic relationships of the Aurantioideae inferred from chloroplast DNA sequence data. Am J Bot. 2003;90(10):1463–9. Pfeil BE, Crisp MD. The age and biogeography of Citrus and the orange subfamily (Rutaceae: Aurantioideae) in Australasia and New Caledonia. Am J Bot. 2008;95(12):1621–31. Morton CM. Phylogenetic relationships of the Aurantioideae (Rutaceae) based on the nuclear ribosomal DNA ITS region and three noncoding chloroplast DNA regions, atpB-rbcL spacer, rps16, and trnL-trnF. Org Diver Evol. 2009;9(1):52–68. Bayer RJ, Mabberley DJ, Morton C, Miller CH, Sharma IK, Pfeil BE, Rich S, Hitchcock R, Sykes S. A molecular phylogeny of the orange subfamily (Rutaceae: Aurantioideae) using nine cpdna sequences. Am J Bot. 2009;96(3):668–85. Penjor T, Anai T, Nagano Y, Matsumoto R, Yamamoto M. Phylogenetic relationships of Citrus and its relatives based on rbcL gene sequences. Tree Gen Genom. 2010;6(6):931–9. Samuel R, Ehrendorfer F, Chase MW, Greger H. Phylogenetic analyses of Aurantioideae (Rutaceae) based on non-coding plastid DNA sequences and phytochemical features. Plant Biol. 2001;3(1):77–87. Linnaeus C. Mantissa Plantarum. Generum editionis VI. Et Specierum editionis II. Stockholm, Sweden: Salvius; 1767. Linnaeus C. Mantissa Plantarum. Altera. Generum editionis VI. Et Specierum editionis II. Regni animalis appendix. Stockholm: Salvius; 1771. Jarvis C. Order out of Chaos: Linnaean plant names and their types. London: Linnean Society of London and Natural History Museum; 2007. Hooker JD. The Flora of British India, vol. 1. London: L Reeve; 1875. Briquet J. Règles internationales de la nomenclature botaniques adoptées par le Congrès International de Botanique de Vienne 1905. Jena: Gustav Fischer; 1906. Zhang DX, Hartley TG, Mabberley DJ. Rutaceae. In: Wu ZY, Raven PH, Hong DY, editors. Flora of China, vol. 11 (Oxalidaceae through Aceraceae). St. Louis, USA, Beijing, China: Science Press and Missouri Botanical Garden Press; 2008. Li Q, Zhu LF, But PPH, Kong YC, Chang HT, Waterman PG. Monoterpene and sesquiterpene rich oils from the leaves of Murraya species - chemotaxonomic significance. Biochem Syst Ecol. 1988;16(5):491–4. Ito Y, Tanaka N, Barford AS, Bogner J, Li J, Yano O, Gale SW. Molecular phylogenetic species deliminitation in the aquatic genus Ottelia (Hydrocharitaceae) reveals cryptic diversity within a widespread species. J Plant Res. 2019;132:335–44. But PPH, Kong YC, Ng KH, Chang HT, Li Q, Yu SX, Waterman PG. A chemotaxonomic study of Murraya (Rutaceae) in China. Acta Phytotaxonomica Sinica. 1986;24:186–92. Mou FJ. Systematics of Clauseninae (Rutaceae). Beijing: Graduate School of the Chinese Academy of Sciences; 2009. Nguyen CH. Circumscription of Murraya and Merrillia (Sapindales: Rutaceae: Aurantioideae) and susceptibility of species and forms to huanglongbing. Richmond, NSW: Western Sydney University; 2011. Tanaka T. Chalcas, a Linnean genus which includes many new types of Asiatic plants. J Soc Trop Agric. 1929;1:23–44. Wendel JF, Doyle J. Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ, editors. Molecular systematics of plants. Boston, USA: Kluwer Academic Publishers; 1998. Seelanan T, Schnabel A, Wendel JF. Congruence and consensus in the cotton tribe (Malvaceae). Syst Bot. 1997;22(2):259–90. Barber JC, Finch CC, Francisco-Ortega J, Santos-Guerra A, Jansen RK. Hybridization in Macaronesian Sideritis (Lamiaceae): evidence from incongruence of multiple independent nuclear and chloroplast sequence datasets. Taxon. 2007;56(1):74–88. Barrett RA, Bayly MJ, Duretto MF, Forster PI, Ladiges PY, Cantrill DJ. Phylogenetic analysis of Zieria (Rutaceae) in Australia and New Caledonia based on nuclear ribosomal DNA shows species polyphyly, divergent paralogues and incongruence with chloroplast DNA. Aust Syst Bot. 2018;31(1):16–47. Galtier N, Daubin V. Dealing with incongruence in phylogenomic analyses. Philos Trans R Soc B Biol Sci. 2008;363(1512):4023–9. Joly S, Starr JR, Lewis WH, Bruneau A. Polyploid and hybrid evolution in roses east of the Rocky Mountains. Am J Bot. 2006;93(3):412–25. Arnold ML, Hodges SA. Are natural hybrids fit or unfit relative to their parents. Trends Ecol Evol. 1995;10(2):67–71. Arnold ML. Natural hybridization and evolution. New York, USA: Oxford University Press; 1997. Raven P. Hybridization and the nature of species in higher plants. Can Bot Assoc Bull. 1980;13:3–10. Mallet J. Hybridization as an invasion of the genome. Trends Ecol Evol. 2005;20(5):229–37. Rieseberg LH, Whitton J, Linder CR. Molecular marker incongruence in plant hybrid zones and phylogenetic trees. Acta Botanica Neerlandica. 1996;45(3):243–62. Tippery NP, Les DH. Evidence for the hybrid origin of Nymphoides montana Aston (Menyanthaceae). Telopea. 2011;13(1–2):285–94. Appelhans MS, Kessler PJA, Smets E, Razafimandimbison SG, Janssens SB. Age and historical biogeography of the pantropically distributed Spathelioideae (Rutaceae, Sapindales). J Biogeogr. 2012;39(7):1235–50. Pigram CJ. Terranes and the accretion history of the Papua New Guinea orogen. AGSO J Aust Geol Geophys. 1987;10:193–211. Hall R. Cenozoic reconstructions of SE Asia and the SW Pacific: changing patterns of land and sea. In: Metcalfe I, Smith JMB, Morwood M, Davidson ID, editors. Faunal and floral migrations and evolution in SE Asia–Australasia. Lisse, Netherlands: Swets and Zeitlinger; 2001. p. 35–56. Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J Asian Earth Sci. 2002;20(4):353–431. Sanmartin I, Ronquist F. Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Syst Biol. 2004;53(2):216–43. Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hal R, Ng PKL, Shih HT, Carvalho GR, von Rintelen T. Biogeography of the Indo-Australian archipelago. Ann Rev Ecol Evol Syst. 2011;42:205–26. Stone BC, Jones DT. New and noteworthy Rutaceae: Aurantioideae from northern Borneo. Studies in Malesian Rutaceae, V. Proc Acad Natl Sci Phila. 1988;140(2):267–74. Lim TK. Merrillia caloxylon, Edible and Non-Medicinal Plants, vol. 4, Fruits. Dordrecht: Springer; 2012. p. 890–2. Carlquist S. Plant dispersal and the origin of Pacific island floras. In: Keast A, Miller SE, editors. The origin and evolution of Pacific island biotas, New Guinea to eastern Polynesia: patterns and processes. Amsterdam: SPB Academic Publishing; 1996. p. 153–64. Muellner AN, Pannell CM, Coleman A, Chase MW. The origin and evolution of Indomalesian, Australasian and Pacific island biotas: insights from Aglaieae (Meliaceae, Sapindales). J Biogeogr. 2008;35(10):1769–89. Crayn DM, Costion C, Harrington MG. The Sahul–Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics. J Biogeogr. 2015;42:11–24. Sniderman JMK, Jordan GJ. Extent and timing of floristic exchange between Australian and Asian rain forests. J Biogeogr. 2011;38(8):1445–55. Burman NL. Flora Indica: cui accedit series zoophytorum indecorum, nec non Prodromus Florae Capensis. Amsterdam: Haek; 1768. Florijn PJ. Geschiedenis van de errste hortus medicus in Indië. Tijdschrift voor de Geschiedenis der Geneeskunde, Natuurwetenschappen, Wiskunde en Techniek, vol. 8; 1985. p. 209–21. Florijn PJ. Biographical notes about four plant collectors in Asia mentioned by NL Burman in his Flora Indica (1768). Taxon. 1987;36:34–8. Mabberley DJ. Mabberley's plant-book: a portable dictionary of plants, their classification and uses. 4th ed. Cambridge: Cambridge University Press; 2017. Forster G. Florulae insularum australium prodromus. Dieterich: Göttingen, Germany; 1786. Hockings D. Mock orange Murraya paniculata var. ovatifoliolata ‘Min–A–Min’. Plant Var J. 1998;11:27. Lindley J. Edwards’s botanical register: consisting of coloured figures of exotic plants, cultivated in British gardens; with their history and mode of treatment, vol. 5. James Ridgeway: London; 1819. Burkill IH. William Jack’s letters to Nathaniel Wallich, 1819-1821. J Straits Branch R Asian Soc. 1916;73:147–268. Beattie G, Holford P, Mabberley D, Haigh A, Bayer R, Broadbent P. Aspects and insights of Australia-Asia collaborative research on huanglongbing. In: Proceedings of the international workshop for the prevention of citrus greening disease in severely infected areas. Tokyo: Ministry of Agriculture, Forestry and Fisheries Tokyo; 2006. p. 7–9. Merrill ED. William Jack's genera and species of Malaysian plants. J Arnold Arboretum. 1952;33:199–251. Hunter W. Plants of Prince of Wales Island. J Straits Branch R Asiatic Soc. 1909;53:49–127. Jones DT. Rutaceae. In: Soepadmo E, Wong K, editors. Tree Flora of Sabah and Sarawak, vol. 1. Malaysia: Forest Research Institute Malaysia, Sabah Forestry Department and Sarawak Forestry Department; 1995. p. 1351–419. Kurz S. Contributions towards a knowledge of the Burmese flora. J Asiatic Soc Bengal. 1874;44:128–90. Kurz S. Forest Flora of British Burma, vol. 1. Calcutta, India: Office of the Superintendent of Government Printing; 1877. Gamble JS. A manual of Indian timbers; an account of the growth, distribution, and uses of the trees and shrubs of India and Ceylon with descriptions of their wood-structure. London: Sampson Low; 1902. Brandis D. Indian trees: an account of trees, shrubs, woody climbers, bamboos and palms indigenous or commonly cultivated in the British Indian empire. London: Constable; 1906. Huang CC. Flora Reipublicae Popularis Sinicae. Beijing: Science Press; 1997. p. 43(2). Om N. The roles of psyllids, host plants and environment in the aetiology of huanglongbing in Bhutan. Richmond: Western Sydney University; 2017. Hollis D. A new citrus-feeding psyllid from the Comoro Islands, with a review of the Diaphorina amoena species group (Homoptera). Syst Entomol. 1987;12(1):47–61. Lopes SA, Frare GF, Camargo LEA, Wulff NA, Teixeira DC, Bassanezi RB, Beattie GAC, Ayres AJ. Liberibacters associated with orange jasmine in Brazil: incidence in urban areas and relatedness to citrus liberibacters. Plant Pathol. 2010;59(6):1044–53. Doyle JJ, Doyle LL. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5. Warude D, Chavan P, Joshi K, Patwardhan B. DNA isolation from fresh, dry plant samples with highly acidic tissue extracts. Plant Mol Biol Report. 2012;21(4):467. Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321–5. Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol. 1991;17(5):1105–9. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot. 2005;92(1):142–66. Demesure B, Sodzi N, Petit RJ. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol. 1995;4(1):129–31. Oxelman B, Liden M, Berglund D. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol. 1997;206(1–4):393–410. Johnson LA, Soltis DE. matk DNA-sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot. 1994;19(1):143–56. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315–22. Thompson JD, Higgins DG, Gibson TJ. Clustal-W - improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8. Swofford DL. PAUP*—phylogenetic analysis using parsimony * and other methods beta version 40b10. Sunderland: Sinauer Associates; 2002. Simmons MP, Ochoterena H. Gaps as characters in sequence-based phylogenetic analyses. Syst Biol. 2000;49(2):369–81. Kumar S, Strecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2019;33(7):1870–4. Ronquist F, Huelsenbeck JP. MrBayes, v. 3: bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:539–42. Nylander JAA. MrModeltest v2. Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University; 2004. Lanfear R, Calcott B, Ho S, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29(6):1695–701. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67(5):901–4. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. Martin DP, Williamson C, Posada D. RDP2: recombination detection and analysis from sequence alignments. Bioinformatics. 2005;21(2):260–2. Drummond AJ, Ho SY, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88. Yule GU. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philos Trans R Soc B Biol Sci. 1925;213(402–410):21–87. Gernhard T. The conditioned reconstructed process. J Theor Biol. 2008;253(4):769–78. Rambaut A, Drummong AJ, Xie W, Baele G, Suchard MA: Tracer: MCMC trace analysis tool v. 1.7.1 2003–2018.