Molecular cloning and functional characterization of MnSOD from Dunaliella salina

Journal of Basic Microbiology - Tập 54 Số 5 - Trang 438-447 - 2014
Wei‐Jen Lee1, Xin Ran Li2, Hui Xu2, Yu Cao2, Shu Han2, Yi Cao2, Dairong Qiao2
1Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
2College of Life Science, Sichuan University Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province Chengdu Sichuan 610065, P. R. China

Tóm tắt

AbstractDunaliella salina, a unicellular green alga, has the potential to grow in hypersaline environments via one of its gene products, superoxide dismutase (SOD). The superoxide radicals (O2) produced by environmental stresses can cause damage to cells, and SOD catalyzes the turnover of such free radicals to protect cells. In this study, the gene coding for SOD in D. salina was cloned and the product was further identified and characterized. The open reading frame of this gene was 651 bp long, encoding for 217 amino acids. According to the sequence alignment using BLAST, native polyacrylamide electrophoresis for SOD activity analysis, and atomic absorption spectroscopy analysis, this protein belongs to the manganese‐containing superoxide dismutase (MnSOD) family. Complementation analysis, performed by introducing plasmids carrying an inducible version of the D. salina gene encoding for MnSOD into an SOD‐deficient mutant of E.coli, revealed that this gene could not only complement the defects in SOD activity, but was also capable of providing a stronger tolerance to restrictive growth conditions, such as high salt and prolonged UV exposure, compared to the tolerance of wild‐type strains.

Từ khóa


Tài liệu tham khảo

10.1126/science.3287616

10.1016/0076-6879(90)86093-B

10.1016/S0021-9258(18)63504-5

10.1016/S0021-9258(18)62675-4

10.1016/S0021-9258(19)43649-1

10.1042/bj3180889

10.1021/bi0496081

10.1073/pnas.0308514101

10.1006/abbi.1996.0463

Casillas M.L., 1997, Alkyl hydroperoxide reductase, catalase, MrgA, and superoxide dismutase are not involved in resistance of Bacillus subtilis spores to heat or oxidizing agents, J. Bacteriol., 179, 7420, 10.1128/jb.179.23.7420-7425.1997

10.1104/pp.120.2.513

10.1006/abbi.2001.2739

Hopkin K.A., 1992, Functional differences between manganese and iron superoxide dismutases in Escherichia coli K‐12, J. Biol. Chem., 267, 24253, 10.1016/S0021-9258(18)35758-2

10.1007/BF01140586

Niederhoffer E.C., 1990, Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus, J. Bacteriol., 172, 1930, 10.1128/jb.172.4.1930-1938.1990

10.1111/j.1365-2958.1991.tb01968.x

10.1128/JB.00554-06

10.1111/j.1399-3054.2008.01193.x

10.1016/j.jphotobiol.2009.09.003

10.1021/jf900447r

10.1016/j.chemosphere.2011.03.032

10.1007/s11738-007-0059-9

10.1146/annurev.mi.49.100195.000333

10.1002/j.1460-2075.1986.tb04256.x

Hunter T., 1998, GST fusion protein expression vector for in‐frame cloning and site‐directed mutagenesis, Biotechniques, 24, 194, 10.2144/98242bm04

Sanders J.W., 1995, Stress‐response in Lactococcus‐lactis‐cloning, expression analysis, and mutation of the lactococcal auperoxide‐dismutase gene, J. Bacteriol., 177, 5254, 10.1128/jb.177.18.5254-5260.1995

10.1016/0003-2697(71)90370-8

10.1016/j.carbon.2008.12.032

10.1016/S0165-022X(00)00162-7

10.1016/j.vph.2006.06.002

10.1002/jcb.20772

10.1007/s10126-005-5030-4

10.1104/pp.118.2.637

10.1016/S0022-2836(02)00624-1

10.1074/jbc.M207691200

10.1046/j.1529-8817.1999.3510136.x

10.1074/jbc.M101169200

10.1016/S0165-022X(00)00162-7

10.1073/pnas.89.18.8716

10.1128/JB.184.18.5096-5103.2002

10.1046/j.1469-8137.1998.00187.x

Steinman H., 1982, Superoxide Dismutase, 11

Weatherburn D.C., 2001, Handbook on Metalloproteins, 193

10.1021/ic0000451