Molecular characterization of NDM-1-producing Pseudomonas aeruginosa isolates from hospitalized patients in Iran
Tóm tắt
The emergence of carbapenem-resistant Pseudomonas aeruginosa is one of the most important challenges in a healthcare setting. The aim of this study is double-locus sequence typing (DLST) typing of blaNDM-1 positive P. aeruginosa isolates. Twenty-nine blaNDM-1 positive isolates were collected during three years of study from different cities in Iran. Modified hodge test (MHT), double-disk synergy test (DDST) and double-disk potentiation test (DDPT) was performed for detection of carbapenemase and metallo-beta-lactamase (MBL) producing blaNDM-1 positive P. aeruginosa isolates. The antibiotic resistance genes were considered by PCR method. Clonal relationship of blaNDM-1 positive was also characterized using DLST method. Antibiotic susceptibility pattern showed that all isolates were resistant to imipenem and ertapenem. DDST and DDPT revealed that 15/29 (51.8%) and 26 (89.7%) of blaNDM-1 positive isolates were MBL producing isolates, respectively. The presence of blaOXA-10, blaVIM-2, blaIMP-1 and blaSPM genes were detected in 86.2%, 41.4%, 34.5% and 3.5% isolates, respectively. DLST typing results revealed the main cluster were DLST 25-11 with 13 infected or colonized patients. The presence of blaNDM-1 gene with other MBLs encoding genes in P. aeruginosa is a potential challenge in the treatment of microorganism infections. DLST showed partial diversity among 29 blaNDM-1 positive isolates.
Tài liệu tham khảo
Floret N, Bertrand X, Thouverez M, et al. Nosocomial infections caused by Pseudomonas aeruginosa: exogenous or endogenous origin of this bacterium? Pathol Biol (Paris). 2009;57:9–12.
Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.
Gniadek TJ, Carroll KC, Simner PJ. Carbapenem-resistant non-glucose-fermenting gram-negative bacilli: the missing piece to the puzzle. J Clin Microbiol. 2016;54:1700–10.
Nakamura I, Yamaguchi T, Tsukimori A, et al. New options of antibiotic combination therapy for multidrug-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2015;34:83–7.
Jeannot K, Poirel L, Robert-Nicoud M, et al. IMP-29, a novel IMP-type metallo-β-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56:2187–90.
Jamal WY, Albert MJ, Rotimi VO. High prevalence of New Delhi metallo-β-lactamase-1 (NDM-1) producers among carbapenem-resistant Enterobacteriaceae in Kuwait. PLoS ONE. 2016;11:e0152638.
Kashyap A, Gupta R, Sharma R, et al. New Delhi metallo beta lactamase: menace and its challenges. J Mol Genet Med. 2017;11:1747–0862.
Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20:440–58. table of contents.
Jovčić B, Lepšanović Z, Begović J, et al. Two copies of blaNDM-1 gene are present in NDM-1 producing Pseudomonas aeruginosa isolates from Serbia. Antonie Van Leeuwenhoek. 2014;105:613–8.
Muir A, Weinbren MJ. New Delhi metallo-beta-lactamase: a cautionary tale. J Hosp Infect. 2010;75:239–40.
Basset P, Blanc DS. Fast and simple epidemiological typing of Pseudomonas aeruginosa using the double-locus sequence typing (DLST) method. Eur J Clin Microbiol Infect Dis. 2014;33:927–32.
Cholley P, Stojanov M, Hocquet D, et al. Comparison of double-locus sequence typing (DLST) and multilocus sequence typing (MLST) for the investigation of Pseudomonas aeruginosa populations. Diagn Microbiol Infect Dis. 2015;82:274–7.
Farajzadeh Sheikh A, Shahin M, Shokoohizadeh L, et al. Molecular epidemiology of colistin-resistant Pseudomonas aeruginosa producing NDM-1 from hospitalized patients in Iran. Iran J Basic Med Sci. 2019;22:38–42.
Lavenir R, Jocktane D, Laurent F, et al. Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J Microbiol Methods. 2007;70:20–9.
Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17:1791–8.
Shacheraghi F, Shakibaie MR, Noveiri H. Molecular identification of ESBL Genes blaGES-blaVEB-blaCTX-M blaOXA-blaOXA-4, blaOXA-10 andblaPER-in Pseudomonas aeruginosa strains isolated from burn patients by PCR, RFLP and sequencing techniques. Int J Biol life Sci. 2010;3:138–42.
Golshani Z, Sharifzadeh A. Prevalence of blaOxa10 type beta-lactamase gene in carbapenemase producing Pseudomonas aeruginosa strains isolated from patients in Isfahan. 2013;6.
Wayne P. CLSI. Performance standards for antimicrobial susceptibility testing; twenty-second. Informational supplement CLSI document M100–S33. Wayne: Clinical and Laboratory Standards Institute; 2019.
Yong D, Lee K, Yum JH, et al. Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2002;40:3798–801.
Alavi Foumani A, Yaghubi Kalurazi T, Mohammadzadeh Rostami F, et al. Epidemiology of Pseudomonas aeruginosa in cystic fibrosis patients in Iran: a systematic review and meta-analysis. Infez Med. 2020;28:314–21.
Ellappan K, Narasimha H, Kumar S. Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in South India. J Glob Antimicrob Resist. 2018;12:37–43.
Faghri J, Nouri S, Jalalifar S, et al. Investigation of antimicrobial susceptibility, class I and II integrons among Pseudomonas aeruginosa isolates from hospitalized patients in Isfahan, Iran. BMC Res Notes. 2018;11:806.
Khajuria A, Praharaj AK, Kumar M, et al. Emergence of NDM-1 in the clinical isolates of Pseudomonas aeruginosa in India. J Clin Diagn Res. 2013;7:1328–31.
Shokri D, Rabbani Khorasgani M, Fatemi SM, et al. Resistotyping, phenotyping and genotyping of New Delhi metallo-β-lactamase (NDM) among Gram-negative bacilli from Iranian patients. J Med Microbiol. 2017;66:402–11.
Dogonchi AA, Ghaemi EA, Ardebili A, et al. Metallo-β-lactamase-mediated resistance among clinical carbapenem-resistant Pseudomonas aeruginosa isolates in northern Iran: a potential threat to clinical therapeutics. Tzu-Chi Med J. 2018;30:90.
Rad ZR, Rad ZR, Goudarzi H, et al. Detection of New Delhi Metallo-β-lactamase-1 among Pseudomonas aeruginosa isolated from adult and pediatric patients in Iranian hospitals. Gene Rep. 2021;23:101152.
Azimi L, Fallah F, Karimi A, et al. Survey of various carbapenem-resistant mechanisms of Acinetobacter baumannii and Pseudomonas aeruginosa isolated from clinical samples in Iran. Iran J Basic Med Sci. 2020;23:1396–400.
Takahashi T, Tada T, Shrestha S, et al. Molecular characterisation of carbapenem-resistant Pseudomonas aeruginosa clinical isolates in Nepal. J Glob Antimicrob Resist. 2021;26:279–84.
Mohanam L, Menon T. Coexistence of metallo-beta-lactamase-encoding genes in Pseudomonas aeruginosa. Indian J Med Res. 2017;146:46-s52.
Shaaban M, Al-Qahtani A, Al-Ahdal M, et al. Molecular characterization of resistance mechanisms in Pseudomonas aeruginosa isolates resistant to carbapenems. J Infect Dev Ctries. 2017;11:935–43.
Paul D, Dhar D, Maurya AP, et al. Occurrence of co-existing bla VIM-2 and bla NDM-1 in clinical isolates of Pseudomonas aeruginosa from India. Ann Clin Microbiol Antimicrob. 2016;15:31.
Rahman M, Prasad KN, Gupta S, et al. Prevalence and molecular characterization of new Delhi metallo-beta-lactamases in multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from India. Microbial Drug Resist. 2018;24:792–8.
Wang M, Borris L, Aarestrup FM, et al. Identification of a Pseudomonas aeruginosa co-producing NDM-1, VIM-5 and VIM-6 metallo-β-lactamases in Denmark using whole-genome sequencing. Int J Antimicrob Agents. 2015;45:324–5.
Farzana R, Shamsuzzaman S, Mamun KZ. Isolation and molecular characterization of New Delhi metallo-beta-lactamase-1 producing superbug in Bangladesh. J Infect Dev Ctries. 2013;7:161–8.
Malkocoglu G, Aktas E, et al. VIM-1, VIM-2, and GES-5 carbapenemases among Pseudomonas aeruginosa isolates at a tertiary hospital in Istanbul. Turkey Microb Drug Resist. 2017;23:328–34.
Paul D, Dhar Chanda D, Maurya AP, et al. Co-carriage of blaKPC-2 and blaNDM-1 in clinical isolates of Pseudomonas aeruginosa associated with hospital infections from India. PLoS ONE. 2015;10:e0145823.
Flateau C, Janvier F, Delacour H, et al. Recurrent pyelonephritis due to NDM-1 metallo-beta-lactamase producing Pseudomonas aeruginosa in a patient returning from Serbia, France, 2012. Eurosurveillance. 2012;17:20311.
Pappa O, Beloukas A, Vantarakis A, et al. Molecular characterization and phylogenetic analysis of Pseudomonas aeruginosa isolates recovered from Greek aquatic habitats implementing the double-locus sequence typing scheme. Microb Ecol. 2017;74:78–88.