Molecular beam epitaxy of three-dimensional Dirac material Sr3PbO

APL Materials - Tập 4 Số 7 - 2016
D. Samal1,2,3, H. Nakamura1,2,3, H. Takagi3,4,5
12Department of Physics, University of Tokyo, 113-0033 Tokyo, Japan
23Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569 Stuttgart, Germany
3Max Planck Institute for Solid State Research 1 , 70569 Stuttgart, Germany
4University of Stuttgart 3 Institute for Functional Matter and Quantum Technologies, , 70569 Stuttgart, Germany
5University of Tokyo 2 Department of Physics, , 113-0033 Tokyo, Japan

Tóm tắt

A series of anti-perovskites including Sr3PbO are recently predicted to be a three-dimensional Dirac material with a small mass gap, which may be a topological crystalline insulator. Here, we report the epitaxial growth of Sr3PbO thin films on LaAlO3 using molecular beam epitaxy. X-ray diffraction indicates (001) growth of Sr3PbO, where [110] of Sr3PbO matches [100] of LaAlO3. Measurements of the Sr3PbO films with parylene/Al capping layers reveal a metallic conduction with p-type carrier density of ∼1020 cm−3. The successful growth of high quality Sr3PbO film is an important step for the exploration of its unique topological properties.

Từ khóa


Tài liệu tham khảo

2011, Phys. Rev. Lett., 107, 127205, 10.1103/PhysRevLett.107.127205

2014, Phys. Rev. Lett., 112, 096804, 10.1103/PhysRevLett.112.096804

2015, Nano Lett., 15, 6434, 10.1021/acs.nanolett.5b01791

2009, Phys. Rev. Lett., 102, 166803, 10.1103/PhysRevLett.102.166803

2014, Phys. Rev. B, 90, 121103, 10.1103/PhysRevB.90.121103

2014, Phys. Rev. Lett., 112, 046801, 10.1103/PhysRevLett.112.046801

2007, Science, 318, 766, 10.1126/science.1148047

2009, Appl. Phys. Lett., 95, 053114, 10.1063/1.3200237

2010, Nat. Phys., 6, 584, 10.1038/nphys1689

2011, Appl. Phys. Express, 4, 083001, 10.1143/APEX.4.083001

2013, Science, 340, 167, 10.1126/science.1234414

2014, Phys. Rev. B, 89, 121302(R), 10.1103/PhysRevB.89.121302

2014, Appl. Phys. Lett., 105, 031901, 10.1063/1.4890940

J. H. Chu, S. C. Riggs, M. Shapiro, J. Liu, C. R. Serero, D. Yi, M. Melissa, S. J. Suresha, C. Frontera, A. Vishwanath, X. Marti, I. R. Fisher, and R. Ramesh, e-print arXiv:1309.4750v2.

2015, Sci. Rep., 5, 9711, 10.1038/srep09711

2015, APL Mater., 3, 041508, 10.1063/1.4913389

2011, J. Phys. Soc. Jpn., 80, 083704, 10.1143/JPSJ.80.083704

2012, J. Phys. Soc. Jpn., 81, 064701, 10.1143/JPSJ.81.064701

2014, Phys. Rev. B, 90, 081112(R), 10.1103/physrevb.90.081112

C.-K. Chiu, Y.-H. Chan, X. Li, Y. Nohara, and A. P. Schnyder, e-print arXiv:1606.03456v2.

1980, Mater. Res. Bull., 15, 1805, 10.1016/0025-5408(80)90200-7

2015, Acta Cryst. B, 71, 300, 10.1107/S2052520615006150

Dirac Electrons in Inverse-Perovskites

2013, Appl. Phys. Lett., 103, 112101, 10.1063/1.4820770

P. J. Fisher, Ph.D. thesis, Carnegie Mellon University, 2008.

2001, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties

1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

T. Kariyado, Ph.D. thesis, University of Tokyo, 2012.

2002, Powder Diffr., 17, 222, 10.1154/1.1490370

2006, Appl. Phys. Lett., 89, 262903, 10.1063/1.2424440

2010, Phys. Rev. B, 81, 245123, 10.1103/PhysRevB.81.245123