Molecular basis of antibody‐mediated neutralization and protection against flavivirus

IUBMB Life - Tập 68 Số 10 - Trang 783-791 - 2016
Lianpan Dai1, Qihui Wang2,3, Jianxun Qi4, Yi Shi4,5,1,6,3, Jinghua Yan2,4,6,3, George F. Gao4,5,7,1,6,3
1Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
2CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
3Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China
4CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
5Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
6Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
7National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China

Tóm tắt

AbstractAntibody‐mediated humoral immunity plays a pivotal role in flavivirus control. Neutralizing antibodies targeting viral envelope (E) protein, provide protection against flaviviruses in vivo but can also promote virus infection by antibody‐dependent enhancement when antibodies are weakly neutralizing or in subneutralizing concentrations. The molecular basis for antibody‐mediated virus neutralization can be revealed by structural studies of monoclonal antibodies complexed with the E protein or virion. In addition, the flavivirus non‐structural protein NS1 can also induce host antibody production, and some of these antibodies can provide protection against virus challenge. In this review, we summarize the known structures of flavivirus neutralizing or protective antibodies bound to their epitopes and describe the underlying molecular mechanisms. © 2016 IUBMB Life, 68(10):783–791, 2016

Từ khóa


Tài liệu tham khảo

10.1016/S0140-6736(08)60238-X

10.1038/nm1144

10.1016/S1473-3099(16)00138-9

10.1016/j.ijid.2016.02.001

10.1128/JVI.78.15.8312-8321.2004

10.1128/JVI.79.21.13350-13361.2005

10.1084/jem.20052388

10.1002/iub.208

10.1371/journal.ppat.1000614

10.1016/j.chom.2016.03.010

10.4269/ajtmh.16-0111

Knipe D.M., 2013, Fields Viriology

10.4049/jimmunol.1001709

10.4049/jimmunol.0801974

10.4049/jimmunol.176.6.3821

10.1111/j.1600-065X.2008.00678.x

10.1089/vim.2008.0089

10.1016/j.chom.2008.08.004

10.1128/JVI.05859-11

10.1038/nsmb.1382

10.1371/journal.ppat.1000672

10.1073/pnas.1011036107

10.1016/j.chom.2010.08.007

10.1016/S0065-3527(03)59002-9

10.1016/S0065-3527(03)59005-4

10.1128/JVI.80.3.1340-1351.2006

10.1128/JVI.00879-07

10.1016/j.cell.2015.06.057

10.1126/science.aaf5316

10.1038/nature17994

10.1038/nature02165

10.1128/JVI.69.2.695-700.1995

10.1128/jvi.70.11.8142-8147.1996

10.1128/JVI.78.6.3178-3183.2004

10.1126/science.1153264

10.1038/nrmicro1067

10.1016/j.antiviral.2016.01.002

10.1038/ni.3058

10.1371/journal.pone.0016059

10.1016/j.chom.2016.04.013

10.1038/emboj.2009.245

10.1038/emboj.2011.439

10.1002/emmm.201303404

10.4049/jimmunol.1200227

10.1371/journal.ppat.1002930

10.1016/j.str.2012.01.001

10.1038/nature03956

10.1073/pnas.0603488103

10.1128/JVI.02411-14

10.1038/nature14130

10.1038/nature18938

10.1038/ncomms7341

10.1126/science.aaa8651

10.1126/scitranslmed.3003888

10.1128/JVI.74.19.8867-8875.2000

10.1128/JVI.74.20.9601-9609.2000

10.1128/JVI.75.8.4002-4007.2001

10.1099/vir.0.80411-0

10.1099/vir.0.037317-0

10.1038/ni.3515

10.1038/ncomms1386

10.1016/0006-291X(92)91739-D

10.3109/10606820308251

10.1046/j.1432-1033.2003.03793.x

10.1038/nsmb.3213

10.1126/scitranslmed.aaa3787