Molecular alterations in the neostriatum of human cocaine addicts

Synapse - Tập 13 Số 4 - Trang 357-369 - 1993
Yasmin L. Hurd1, Miles Herkenham1
1Section on Functional Neuroanatomy, National Institute of Mental Health, Bethesda, Maryland 20892.

Tóm tắt

Abstract

Molecular changes in the neostriatum of human subjects who died with a history of cocaine abuse were revealed in discrete cell populations by means of the techniques of in situ hybridization histochemistry and in vitro receptor binding and autoradiography. Cocaine subjects had a history of repeated cocaine use and had cocaine and/or cocaine metabolites on board at the time of death. These subjects were compared to control subjects that had both a negative history and toxicology of cocaine use. Selective alterations in mRNA levels of striatal neuropeptides were detected in cocaine subjects compared to control subjects, especially for the opioid peptides. Marked reductions in the levels of enkephalin mRNA and μ opiate receptor binding were found in the caudate and putamen, concomitant with elevations in levels of dynorphin mRNA and κ opiate receptor binding in the putamen and caudate, respectively. Dopamine uptake site binding was reduced in the caudate and putamen of cocaine subjects. The greater magnitude of changes in the dorsolateral striatum (caudate and putamen) as opposed to the ventromedial striatum (nucleus accumbens) suggests that cocaine abuse preferentially alters the biosynthetic activity of striatal systems associated with sensorimotor functioning. Additionally, an imbalance in the activity of the two major striatal output pathways in cocaine users is implicated because peptide mRNA levels were reduced in enkephalinergic striatopallidal neurons and increased in dynorphinergic striatonigral neurons. Another imbalance, that of reductions of transmitter mRNA and receptor expression associated with euphoria (enkephalin and μ opiate receptors), together with elevations in mRNAs of transmitter systems associated with dysphoria (dynorphin and κ opiate receptors), suggests a model of dysphoria and craving in the human cocaine addict brain. © 1993 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1016/0006-8993(91)91005-L

Björklund A., 1984, Handbook of Chemical Neuroanatomy, Vol. 2: Classical Transmitters in the CNS, Part I, 55

10.1016/0306-4522(84)90146-5

10.1016/0304-3940(90)90150-8

10.1016/0006-8993(77)91034-4

Chavkin C., 1982, Dynorphin is a specific endogenous ligand for the β‐opioid receptor, Science, 215, 413, 10.1126/science.6120570

10.1021/ac00132a007

10.1073/pnas.82.12.4291

Colliver J., 1987, A Decade of Dawn: Cocaine‐Related Cases

10.1038/295663a0

10.1111/j.1476-5381.1984.tb10143.x

10.1038/271178a0

10.1016/0149-7634(85)90022-3

Dahlström A., 1964, Evidence for the existence of monoamine neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand., 62, 1

DeArmond S. J., 1974, Structure of the Human Brain: A Photographic Atlas, 166

10.1016/0006-8993(82)90003-8

10.1016/0306-4522(84)90075-7

10.1002/cne.903040307

10.1016/0006-8993(86)91658-6

Extein L., 1987, Persistent neurochemical deficit in cocaine abuse, Am. Psychiatr. Assoc. New Res., 61, 52

10.1016/0006-8993(92)90252-5

10.1016/0091-3057(83)90261-7

Fischman N. W., 1984, The behavioral pharmacology of cocaine in humans, NIDA Res. Monogr., 50, 72

10.1016/0306-4522(84)90294-X

10.1126/science.2011738

10.1126/science.2799392

10.1146/annurev.ne.15.030192.001441

10.1016/0091-3057(84)90284-3

10.1016/0166-2236(90)90104-I

10.1016/0014-2999(88)90397-4

10.1016/0166-2236(82)90037-6

10.1016/B978-0-12-470350-6.50015-9

10.1016/0306-4522(87)90268-5

10.1016/0169-328X(92)90198-K

10.1002/syn.890030107

10.1111/j.1471-4159.1988.tb03103.x

10.1016/0169-328X(92)90058-J

10.1523/JNEUROSCI.05-06-01513.1985

10.1073/pnas.85.2.627

Kalivas P. W., 1988, Behavioral and neurochemical effects of acute and daily cocaine administration in rats, J. Pharmacol. Exp. Therap., 245, 485

10.1016/0006-8993(77)90323-7

10.1016/0014-2999(90)94054-2

10.1016/0306-4522(88)90101-7

10.1016/0361-9230(88)90236-5

10.1073/pnas.84.3.881

10.1016/0091-3057(89)90478-4

10.1073/pnas.87.1.230

10.1016/0361-9230(84)90238-7

10.1007/BF00227990

10.1016/0306-4522(92)90503-T

10.1038/267495a0

10.1016/0006-8993(86)90285-4

10.1073/pnas.81.14.4577

10.1016/0361-9230(83)90166-1

10.1038/342926a0

10.1016/0306-4522(78)90041-6

10.1016/0143-4179(84)90100-8

Parent A., 1986, Comparative Neuroanatomy of the Basal Ganglia

10.1128/MCB.10.9.4701

10.1007/BF00427441

10.1126/science.3016896

10.1016/0006-8993(90)91177-I

10.1016/S0196-0644(05)82378-9

10.1126/science.2820058

10.1016/0091-3057(80)90166-5

10.1111/j.1600-0773.1966.tb00392.x

10.1126/science.6142531

10.1016/0006-3223(88)90222-3

10.1126/science.1948034

Sivam S. P., 1989, Cocaine selectively increases striatonigral dynorphin levels by a dopaminergic mechanism, Pharmacol. Exper. Ther., 250, 818

10.3109/10826088409057173

10.1016/0006-8993(87)90702-5

10.1002/jnr.490030203

10.1016/0361-9230(87)90162-6

10.1111/j.1365-201X.1971.tb11000.x

10.1073/pnas.88.24.11168

10.1016/0014-2999(82)90477-0

10.1073/pnas.87.18.7050

Xia Y., 1992, Dopamine transporter mRNA content in rat substantia nigra: Cocaine‐related decrease, Soc. Neurosci. Abstr., 18, 474

10.1016/0006-8993(89)90856-1

10.1073/pnas.83.24.9827