Molecular alterations as target for therapy in metastatic osteosarcoma: a review of literature

Springer Science and Business Media LLC - Tập 28 - Trang 493-503 - 2011
J. PosthumaDeBoer1, M. A. Witlox2, G. J. L. Kaspers3, B. J. van Royen1,4
1Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
2Department of Orthopaedic Surgery, Westfries Gasthuis, Hoorn, The Netherlands
3Paediatric Oncology/Haematology, VU University Medical Center, Amsterdam, The Netherlands
4VU University Medical Center, Amsterdam, The Netherlands

Tóm tắt

Treating metastatic osteosarcoma (OS) remains a challenge in oncology. Current treatment strategies target the primary tumour rather than metastases and have a limited efficacy in the treatment of metastatic disease. Metastatic cells have specific features that render them less sensitive to therapy and targeting these features might enhance the efficacy of current treatment. A detailed study of the biological characteristics and behaviour of metastatic OS cells may provide a rational basis for innovative treatment strategies. The aim of this review is to give an overview of the biological changes in metastatic OS cells and the preclinical and clinical efforts targeting the different steps in OS metastases and how these contribute to designing a metastasis directed treatment for OS.

Tài liệu tham khảo

Mirabello L, Troisi RJ, Savage SA (2009) Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 115(7):1531–1543 Bacci G, Rocca M, Salone M et al (2008) High grade osteosarcoma of the extremities with lung metastases at presentation: treatment with neoadjuvant chemotherapy and simultaneous resection of primary and metastatic lesions. J Surg Oncol 98(6):415–420 Bielack SS, Carrle D, Hardes J et al (2008) Bone tumors in adolescents and young adults. Curr Treat Options Oncol 9(1):67–80 Harting MT, Blakely ML (2006) Management of osteosarcoma pulmonary metastases. Semin Pediatr Surg 15(1):25–29 Hughes DP (2009) Strategies for the targeted delivery of therapeutics for osteosarcoma. Expert Opin Drug Deliv 6(12):1311–1321 Messerschmitt PJ, Garcia RM, bdul-Karim FW et al (2009) Osteosarcoma. J Am Acad Orthop Surg 17(8):515–527 Kager L, Zoubek A, Potschger U et al (2003) Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol 21(10):2011–2018 Bielack SS, Kempf-Bielack B, Delling G et al (2002) Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 20(3):776–790 Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369(9574):1742–1757 Pradelli E, Karimdjee-Soilihi B, Michiels JF et al (2009) Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs. Int J Cancer 125(11):2586–2594 Rodriguez NI, Hoots WK, Koshkina NV et al (2008) COX-2 expression correlates with survival in patients with osteosarcoma lung metastases. J Pediatr Hematol Oncol 30(7):507–512 Fuchs J, Seitz G, Ellerkamp V et al (2008) Analysis of sternotomy as treatment option for the resection of bilateral pulmonary metastases in pediatric solid tumors. Surg Oncol 17(4):323–330 Briccoli A, Rocca M, Salone M et al (2010) High grade osteosarcoma of the extremities metastatic to the lung: long-term results in 323 patients treated combining surgery and chemotherapy, 1985–2005. Surg Oncol 19(4):193–199 Krishnan K, Khanna C, Helman LJ (2005) The biology of metastases in pediatric sarcomas. Cancer J 11(4):306–313 deNigris F, Rossiello R, Schiano C et al (2008) Deletion of Yin Yang 1 protein in osteosarcoma cells on cell invasion and CXCR4/angiogenesis and metastasis. Cancer Res 68(6):1797–1808 Diaz-Montero CM, Wygant JN, McIntyre BW (2006) PI3-K/Akt-mediated anoikis resistance of human osteosarcoma cells requires Src activation. Eur J Cancer 42(10):1491–1500 Guo Y, Rubin EM, Xie J et al (2008) Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin Orthop Relat Res 466(9):2039–2045 Hingorani P, Zhang W, Gorlick R et al (2009) Inhibition of Src phosphorylation alters metastatic potential of osteosarcoma in vitro but not in vivo. Clin Cancer Res 15(10):3416–3422 Kansara M, Thomas DM (2007) Molecular pathogenesis of osteosarcoma. DNA Cell Biol 26(1):1–18 Kansara M, Tsang M, Kodjabachian L et al (2009) Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 119(4):837–851 Khanna C, Wan X, Bose S et al (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 10(2):182–186 Kim SY, Lee CH, Midura BV et al (2008) Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis 25(3):201–211 Lafleur EA, Koshkina NV, Stewart J et al (2004) Increased Fas expression reduces the metastatic potential of human osteosarcoma cells. Clin Cancer Res 10(23):8114–8119 Pasello M, Michelacci F, Scionti I et al (2008) Overcoming glutathione S-transferase P1-related cisplatin resistance in osteosarcoma. Cancer Res 68(16):6661–6668 Ren L, Hong SH, Cassavaugh J et al (2009) The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene 28(6):792–802 Wang IC, Chen YJ, Hughes DE et al (2008) FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness. J Biol Chem 283(30):20770–20778 Zucchini C, Rocchi A, Manara MC et al (2008) Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines. Int J Oncol 32(1):17–31 Gorlick R, Anderson P, Andrulis I et al (2003) Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary. Clin Cancer Res 9(15):5442–5453 Kawabe T (2004) G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 3(4):513–519 Nyberg KA, Michelson RJ, Putnam CW et al (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617–656 Reinhardt HC, Aslanian AS, Lees JA et al (2007) p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11(2):175–189 Syljuasen RG, Jensen S, Bartek J et al (2006) Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res 66(21):10253–10257 Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70 Kashima T, Nakamura K, Kawaguchi J et al (2003) Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int J Cancer 104(2):147–154 Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904 Worth LL, Lafleur EA, Jia SF et al (2002) Fas expression inversely correlates with metastatic potential in osteosarcoma cells. Oncol Rep 9(4):823–827 Hynes RO (2003) Metastatic potential: generic predisposition of the primary tumor or rare, metastatic variants-or both? Cell 113(7):821–823 Khanna C, Khan J, Nguyen P et al (2001) Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res 61(9):3750–3759 Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524 Anderson P, Kopp L, Anderson N et al (2008) Novel bone cancer drugs: investigational agents and control paradigms for primary bone sarcomas (Ewing’s sarcoma and osteosarcoma). Expert Opin Investig Drugs 17(11):1703–1715 Hughes DP (2010) How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treat Res 152:479–496 Laverdiere C, Hoang BH, Yang R et al (2005) Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma. Clin Cancer Res 11(7):2561–2567 Fan DG, Dai JY, Tang J et al (2009) Silencing of calpain expression reduces the metastatic potential of human osteosarcoma cells. Cell Biol Int 33(12):1263–1267 Kim LC, Song L, Haura EB (2009) Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6(10):587–595 Pignochino Y, Grignani G, Cavalloni G et al (2009) Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol Cancer 8:118 Rubin EM, Guo Y, Tu K et al (2010) Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma. Mol Cancer Ther 9(3):731–741 Guo Y, Zi X, Koontz Z et al (2007) Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res 25(7):964–971 Engin F, Bertin T, Ma O et al (2009) Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 18(8):1464–1470 Tanaka M, Setoguchi T, Hirotsu M et al (2009) Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer 100(12):1957–1965 Zhang P, Yang Y, Zweidler-McKay PA et al (2008) Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res 14(10):2962–2969 Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2(4):277–288 Leow PC, Tian Q, Ong ZY, Yang Z, Ee PL (2010) Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells. Invest New Drugs 28(6):766–782 Cai Y, Mohseny AB, Karperien M et al (2010) Inactive Wnt/beta-catenin pathway in conventional high-grade osteosarcoma. J Pathol 220(1):24–33 Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27(55):6920–6929 Gordon N, Koshkina NV, Jia SF et al (2007) Corruption of the Fas pathway delays the pulmonary clearance of murine osteosarcoma cells, enhances their metastatic potential, and reduces the effect of aerosol gemcitabine. Clin Cancer Res 13(15 Pt 1):4503–4510 Duan X, Jia SF, Koshkina N et al (2006) Intranasal interleukin-12 gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases. Cancer 106(6):1382–1388 Yang C, Yang S, Wood KB et al (2009) Multidrug resistant osteosarcoma cell lines exhibit deficiency of GADD45alpha expression. Apoptosis 14(1):124–133 Yuan XW, Zhu XF, Huang XF et al (2007) Interferon-alpha enhances sensitivity of human osteosarcoma U2OS cells to doxorubicin by p53-dependent apoptosis. Acta Pharmacol Sin 28(11):1835–1841 Hoang BH, Kubo T, Healey JH et al (2004) Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 109(1):106–111 Schuetze S, Wathen K, Choy E et al (2010) Results of a Sarcoma Alliance for Research through Collaboration (SARC) phase II trial of dasatinib in previously treated, high-grade, advanced sarcoma. J Clin Oncol 28(15):10009 Whelan J, Patterson D, Perisoglou M et al (2010) The role of interferons in the treatment of osteosarcoma. Pediatr Blood Cancer 54(3):350–354 Lafleur EA, Jia SF, Worth LL et al (2001) Interleukin (IL)-12 and IL-12 gene transfer up-regulate Fas expression in human osteosarcoma and breast cancer cells. Cancer Res 61(10):4066–4071 Nakamura Y, Yamada N, Ohyama H et al (2006) Effect of interleukin-18 on metastasis of mouse osteosarcoma cells. Cancer Immunol Immunother 55(9):1151–1158 Chou AJ, Kleinerman ES, Krailo MD et al (2009) Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer 115(22):5339–5348 Lewis VO (2009) What’s new in musculoskeletal oncology. J Bone Joint Surg Am 91(6):1546–1556 EURAMOS. www.ctu.mrc.ac.uk/euramos. Accessed 18 May 2009. Ref Type: Electronic Citation Huang CY, Lee CY, Chen MY et al (2009) Stromal cell-derived factor-1/CXCR4 enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and NF-kappaB-dependent pathways. J Cell Physiol 221(1):204–212 Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25(4):521–529 Murphy PM (2001) Chemokines and the molecular basis of cancer metastasis. N Engl J Med 345(11):833–835 Wan X, Kim SY, Guenther LM et al (2009) Beta4 integrin promotes osteosarcoma metastasis and interacts with ezrin. Oncogene 28(38):3401–3411 Hauben EI, Bielack S, Grimer R et al (2006) Clinico-histologic parameters of osteosarcoma patients with late relapse. Eur J Cancer 42(4):460–466 Strauss SJ, McTiernan A, Whelan JS (2004) Late relapse of osteosarcoma: implications for follow-up and screening. Pediatr Blood Cancer 43(6):692–697 Barkan D, Green JE, Chambers AF (2010) Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46(7):1181–1188 Favaro E, Amadori A, Indraccolo S (2008) Cellular interactions in the vascular niche: implications in the regulation of tumor dormancy. APMIS 116(7–8):648–659 Almog N, Ma L, Raychowdhury R et al (2009) Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res 69(3):836–844 Liu X, Lei M, Erikson RL (2006) Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol Cell Biol 26(6):2093–2108 Scotlandi K, Picci P, Kovar H (2009) Targeted therapies in bone sarcomas. Curr Cancer Drug Targets 9(7):843–853 Mansky PJ, Liewehr DJ, Steinberg SM et al (2002) Treatment of metastatic osteosarcoma with the somatostatin analog OncoLar: significant reduction of insulin-like growth factor-1 serum levels. J Pediatr Hematol Oncol 24(6):440–446 Kolb EA, Gorlick R, Houghton PJ et al (2008) Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer 50(6):1190–1197 Abdeen A, Chou AJ, Healey JH et al (2009) Correlation between clinical outcome and growth factor pathway expression in osteogenic sarcoma. Cancer 115(22):5243–5250 Kim HS, Lim SJ, Park YK (2009) Anti-angiogenic factor endostatin in osteosarcoma. APMIS 117(10):716–723 Ryu K, Choy E, Yang C, Susa M, Hornicek FJ, Mankin H, Duan Z (2010) Activation of signal transducer and activator of transcription 3 (Stat3) pathway in osteosarcoma cells and overexpression of phosphorylated-Stat3 correlates with poor prognosis. J Orthop Res 28(7):971–978 Kaya M, Wada T, Nagoya S et al (2007) Prevention of postoperative progression of pulmonary metastases in osteosarcoma by antiangiogenic therapy using endostatin. J Orthop Sci 12(6):562–567 Kolb EA, Kamara D, Zhang W et al (2010) R1507, a fully human monoclonal antibody targeting IGF-1R, is effective alone and in combination with rapamycin in inhibiting growth of osteosarcoma xenografts. Pediatr Blood Cancer 55(1):67–75