Molecular Basis of Calcium-Sensitizing and Desensitizing Mutations of the Human Cardiac Troponin C Regulatory Domain: A Multi-Scale Simulation Study
Tóm tắt
Từ khóa
Tài liệu tham khảo
AMA Gordon, 2000, Regulation of contraction in striated muscle, Physiol Rev, 80, 853, 10.1152/physrev.2000.80.2.853
JCJ Tardiff, 2005, Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes, Heart Failure Rev, 10, 237, 10.1007/s10741-005-5253-5
A Gomes, 2005, Mutations in human cardiac Troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development, J Biol Chem, 280, 30909, 10.1074/jbc.M500287200
SB Marston, 2011, How Do Mutations in Contractile Proteins Cause the Primary Familial Cardiomyopathies?, J Cardio Trans Res, 4, 245, 10.1007/s12265-011-9266-2
A Kimura, 2010, Molecular basis of hereditary cardiomyopathy: abnormalities in calcium sensitivity, stretch response, stress response and beyond, J Hum Genet, 55, 81, 10.1038/jhg.2009.138
CC Lim, 2008, A novel mutant cardiac troponin C disrupts molecular motions critical for calcium binding affinity and cardiomyocyte contractility, Biophys J, 94, 3577, 10.1529/biophysj.107.112896
Y Li, 2000, Bepridil opens the regulatory N-terminal lobe of cardiac troponin C, Proc Natl Acad Sci, 97, 5140, 10.1073/pnas.090098997
MS Parvatiyar, 2010, Predicting cardiomyopathic phenotypes by altering the Ca2+ affinity of cardiac troponin C, The J Biol Chem, 285, 27785, 10.1074/jbc.M110.112326
J Pinto, 2009, A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy, The J Biol Chem, 284, 19090, 10.1074/jbc.M109.007021
SB Tikunova, 2004, Designing Calcium-sensitizing Mutations in the Regulatory Domain of Cardiac Troponin C, J Biol Chem, 279, 35341, 10.1074/jbc.M405413200
I Robertson, 2011, Visualizing the principal component of 1 H, 15 N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C, J Biomol NMR, 51, 115, 10.1007/s10858-011-9546-9
S Takeda, 2003, Structure of the core domain of human cardiac troponin in the Ca2+-saturated form, Nature, 424, 35, 10.1038/nature01780
L Spyracopoulos, 2001, Temperature Dependence of Dynamics and Thermodynamics of the Regulatory Domain of Human Cardiac Troponin C, Biochemistry, 40, 12541, 10.1021/bi010903k
L Spyracopoulos, 1998, Dynamics and Thermodynamics of the Regulatory Domain of Human Cardiac Troponin C in the Apo- and Calcium-Saturated States, Biochemistry, 37, 18032, 10.1021/bi9816960
L Spyracopoulos, 1997, Calcium-Induced Structural Transition in the Regulatory Domain of Human Cardiac Troponin C,, Biochemistry, 36, 12138, 10.1021/bi971223d
S Lindert, 2012, Dynamics and Calcium Association to the N-Terminal Regulatory Domain of Human Cardiac Troponin C: A Multiscale Computational Study, J Phys Chem B, 116, 8449, 10.1021/jp212173f
JF Varughese, 2011, Molecular Dynamics and Docking Studies on Cardiac Troponin C, J Biomol Struct Dyn, 29, 123, 10.1080/07391102.2011.10507378
S Lindert, 2012, Millisecond-timescale simulations of Troponin C, Biophys J
D Wang, 2012, Structural and functional consequences of the cardiac troponin C L48Q Ca2+-sensitizing mutation, Biochemistry, 51, 4473, 10.1021/bi3003007
E Darve, 2001, Calculating free energies using average force, J Chem Phys, 115, 9169, 10.1063/1.1410978
M Oleszczuk, 2010, Solution structure of the regulatory domain of human cardiac troponin C in complex with the switch region of cardiac troponin I and W7: The basis of W7 as an inhibitor of cardiac muscle contraction, J Mol Cell Cardiol, 48, 925, 10.1016/j.yjmcc.2010.01.016
A Wand, 2001, Dynamic activation of protein function: a view emerging from NMR spectroscopy, Nat Struct Mol Biol, 8, 926, 10.1038/nsb1101-926
MS Marlow, 2010, The role of conformational entropy in molecular recognition by calmodulin, Nat Chem Biol, 6, 352, 10.1038/nchembio.347
R Alsallaq, 2008, Electrostatic rate enhancement and transient complex of proteinprotein association, Prot Func Bioinformatics, 71, 320, 10.1002/prot.21679
Y Ogawa, 1985, Calcium binding to troponin C and troponin: effects of Mg2+, ionic strength and pH, J Biochem, 97, 1011, 10.1093/oxfordjournals.jbchem.a135143
AL Hazard, 1998, The kinetic cycle of cardiac troponin C: Calcium binding and dissociation at site II trigger slow conformational rearrangements, Prot Sci, 7, 2451, 10.1002/pro.5560071123
JP Konhilas, 2001, Myofilament Calcium Sensitivity in Skinned Rat Cardiac Trabeculae: Role of Interfilament Spacing, Circ Res, 90, 59, 10.1161/hh0102.102269
S Tikunova, 2002, Effect of hydrophobic residue substitutions with glutamine on Ca2+ binding and exchange with the N-domain of troponin C, Biochemistry, 41, 6697, 10.1021/bi011763h
FC BERNSTEIN, 1977, The Protein Data Bank. A Computer-Based Archival File for Macromolecular Structures, Eur J Biochem, 80, 319, 10.1111/j.1432-1033.1977.tb11885.x
W Humphrey, 1996, VMD: visual molecular dynamics, J Mol Graphics, 14, 33, 10.1016/0263-7855(96)00018-5
BR Brooks, 2009, CHARMM: The biomolecular simulation program, J Comp Chem, 30, 1545, 10.1002/jcc.21287
B Dickson, 2010, Free energy calculations: An efficient adaptive biasing potential method, J Phys Chem B, 114, 5823, 10.1021/jp100926h
BJ Grant, 2006, Bio3d: an R package for the comparative analysis of protein structures, Bioinformatics, 22, 2695, 10.1093/bioinformatics/btl461
MM Christen, 2005, The GROMOS software for biomolecular simulation: GROMOS05, J Comp Chem, 26, 1719, 10.1002/jcc.20303
WW Kabsch, 1983, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, 22, 2577, 10.1002/bip.360221211
KLK Yap, 2002, Vector geometry mapping. A method to characterize the conformation of helix-loop-helix calcium-binding proteins, Methods Mol Biol, 173, 317
NA Baker, 2001, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proc Natl Acad Sci U S A, 98, 10037, 10.1073/pnas.181342398
JJ Prompers, 2002, General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation, J Am Chem Soc, 124, 4522, 10.1021/ja012750u
GA Huber, 2010, Browndye: A Software Package for Brownian Dynamics, Comput Phys Commun, 181, 1896, 10.1016/j.cpc.2010.07.022