Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
CÁC THÍ BIỂU THÍCH Ở ĐỘNG VẬT THÍ NGHIỆM VÀ NÃO DƯỚI TÁC ĐỘNG CỦA VIỆC NGHIỆN THUỐC SAU KHI NGƯNG SỬ DỤNG OXYCODONE TĂNG CƯỜNG
Tóm tắt
Sự tiếp xúc lặp đi lặp lại với chất chủ vận opioid oxycodone có thể dẫn đến tình trạng nghiện. Nghiên cứu này nhằm mục tiêu xác định các hậu quả neurobiological tiềm năng của việc rút lui từ việc tự dùng oxycodone ở chuột, trong hai điều kiện: tự dùng tăng cường và không tăng cường. Để đạt được các mục tiêu này, chúng tôi đã sử dụng tiếp cận ngắn hạn (ShA) (3 giờ) và tiếp cận dài hạn (LgA) (9 giờ) cho việc tự dùng oxycodone, sau đó là giai đoạn kiêng khem kéo dài. Sau 31 ngày ngưng chất, chúng tôi đã định lượng mức độ mRNA và protein của các thụ thể opioid ở vùng đuôi và hồi hải mã của chuột. Các chuột trong nhóm LgA, nhưng không phải nhóm ShA, đã thể hiện sự gia tăng việc tự dùng oxycodone, với sự phân biệt của hai kiểu hành vi với mức sử dụng tương đối thấp (LgA-L) và cao hơn (LgA-H). Cả hai kiểu LgA, nhưng không phải ShA, đều cho thấy sự gia tăng theo thời gian trong việc tìm kiếm oxycodone trong suốt 31 ngày của giai đoạn ngưng thuốc. Các chuột từ cả nhóm LgA-L và LgA-H cũng cho thấy mức protein của thụ thể opioid mu ở vùng đuôi giảm so với chuột được tiêm muối và chuột nhóm ShA. Ngược lại, biểu hiện mRNA của thụ thể opioid mu đã tăng lên ở vùng đuôi của các chuột LgA-H. Hơn nữa, mức protein của thụ thể mu và kappa ở hồi hải mã cũng đã tăng lên ở kiểu LgA-H. Dù vậy, mức mRNA của thụ thể mu ở hồi hải mã đã giảm ở hai nhóm LgA trong khi biểu hiện mRNA của thụ thể kappa giảm ở nhóm ShA và nhóm oxycodone LgA. Sự giảm biểu hiện protein thụ thể opioid mu ở vùng đuôi của các chuột LgA có thể đóng vai trò là nền tảng cho việc tái diễn tìm kiếm thuốc, vì những thay đổi này xảy ra ở những con chuột cho thấy sự ấp ủ tìm kiếm oxycodone.
Từ khóa
#opioid #oxycodone #nghiện #kiêng thuốc #thụ thể opioid mu #thụ thể kappa #chuột thí nghiệmTài liệu tham khảo
Skolnick P (2017) The opioid epidemic: crisis and solutions. Annu Rev Pharmacol Toxicol. https://doi.org/10.1146/annurev-pharmtox-010617-052534
Cicero TJ, Inciardi JA, Munoz A (2005) Trends in abuse of Oxycontin and other opioid analgesics in the United States: 2002-2004. J Pain 6(10):662–672. https://doi.org/10.1016/j.jpain.2005.05.004
Banta-Green CJ, Merrill JO, Doyle SR, Boudreau DM, Calsyn DA (2009) Measurement of opioid problems among chronic pain patients in a general medical population. Drug Alcohol Depend 104(1–2):43–49. https://doi.org/10.1016/j.drugalcdep.2009.03.022
King SJ, Reid C, Forbes K, Hanks G (2011) A systematic review of oxycodone in the management of cancer pain. Palliat Med 25(5):454–470. https://doi.org/10.1177/0269216311401948
Schuckit MA (2016) Treatment of opioid-use disorders. N Engl J Med 375(4):357–368. https://doi.org/10.1056/NEJMra1604339
Shippenberg TS, LeFevour A, Chefer VI (2008) Targeting endogenous mu- and delta-opioid receptor systems for the treatment of drug addiction. CNS Neurol Disord Drug Targets 7(5):442–453
Cox BM, Christie MJ, Devi L, Toll L, Traynor JR (2015) Challenges for opioid receptor nomenclature: IUPHAR review 9. Br J Pharmacol 172(2):317–323. https://doi.org/10.1111/bph.12612
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G (2016) Molecular pharmacology of delta-opioid receptors. Pharmacol Rev 68(3):631–700. https://doi.org/10.1124/pr.114.008979
Pasternak GW, Pan YX (2013) Mu opioids and their receptors: evolution of a concept. Pharmacol Rev 65(4):1257–1317. https://doi.org/10.1124/pr.112.007138
Bruchas MR, Roth BL (2016) New technologies for elucidating opioid receptor function. Trends Pharmacol Sci 37(4):279–289. https://doi.org/10.1016/j.tips.2016.01.001
Fujita W, Gomes I, Devi LA (2014) Revolution in GPCR signalling: opioid receptor heteromers as novel therapeutic targets: IUPHAR review 10. Br J Pharmacol 171(18):4155–4176. https://doi.org/10.1111/bph.12798
Zhang L, Kibaly C, Wang YJ, Xu C, Song KY, McGarrah PW, Loh HH, Liu JG et al (2017) Src-dependent phosphorylation of mu-opioid receptor at Tyr(336) modulates opiate withdrawal. EMBO Mol Med 9(11):1521–1536. https://doi.org/10.15252/emmm.201607324
Meye FJ, van Zessen R, Smidt MP, Adan RA, Ramakers GM (2012) Morphine withdrawal enhances constitutive mu-opioid receptor activity in the ventral tegmental area. J Neurosci Off J Soc Neurosci 32(46):16120–16128. https://doi.org/10.1523/jneurosci.1572-12.2012
Kelsey JE, Verhaak AM, Schierberl KC (2015) The kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI), decreases morphine withdrawal and the consequent conditioned place aversion in rats. Behav Brain Res 283:16–21. https://doi.org/10.1016/j.bbr.2015.01.008
Dong Y, Taylor JR, Wolf ME, Shaham Y (2017) Circuit and synaptic plasticity mechanisms of drug relapse. J Neurosci Off J Soc Neurosci 37(45):10867–10876. https://doi.org/10.1523/jneurosci.1821-17.2017
Bossert JM, Hoots JK, Fredriksson I, Adhikary S, Zhang M, Venniro M, Shaham Y (2018) Role of mu, but not delta or kappa, opioid receptors in context-induced reinstatement of oxycodone seeking. Eur J Neurosci. https://doi.org/10.1111/ejn.13955
Mavrikaki M, Pravetoni M, Page S, Potter D, Chartoff E (2017) Oxycodone self-administration in male and female rats. Psychopharmacology 234(6):977–987. https://doi.org/10.1007/s00213-017-4536-6
Wade CL, Vendruscolo LF, Schlosburg JE, Hernandez DO, Koob GF (2015) Compulsive-like responding for opioid analgesics in rats with extended access. Neuropsychopharmacology 40(2):421–428. https://doi.org/10.1038/npp.2014.188
Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57(3):432–441. https://doi.org/10.1016/j.neuron.2007.12.019
Everitt BJ, Robbins TW (2016) Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol 67:23–50. https://doi.org/10.1146/annurev-psych-122414-033457
Hodebourg R, Murray JE, Fouyssac M, Puaud M, Everitt BJ, Belin D (2018) Heroin seeking becomes dependent on dorsal striatal dopaminergic mechanisms and can be decreased by N-acetylcysteine. Eur J Neurosci. https://doi.org/10.1111/ejn.13894
Gabriele A, Setlow B, Packard MG (2009) Cocaine self-administration alters the relative effectiveness of multiple memory systems during extinction. Learn Mem 16(5):296–299. https://doi.org/10.1101/lm.1253409
Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598. https://doi.org/10.1146/annurev.neuro.29.051605.113009
Goodman J, Packard MG (2016) Memory systems and the addicted brain. Front Psychiatry 7:24. https://doi.org/10.3389/fpsyt.2016.00024
Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 65(1):65–72. https://doi.org/10.1006/nlme.1996.0007
Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3(8):760–773. https://doi.org/10.1016/S2215-0366(16)00104-8
George SR, Zastawny RL, Briones-Urbina R, Cheng R, Nguyen T, Heiber M, Kouvelas A, Chan AS et al (1994) Distinct distributions of mu, delta and kappa opioid receptor mRNA in rat brain. Biochem Biophys Res Commun 205(2):1438–1444
Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987) Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci Off J Soc Neurosci 7(8):2445–2464
Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, Watson SJ (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350(3):412–438. https://doi.org/10.1002/cne.903500307
Moore K, Madularu D, Iriah S, Yee JR, Kulkarni P, Darcq E, Kieffer BL, Ferris CF (2016) BOLD imaging in awake wild-type and mu-opioid receptor knock-out mice reveals on-target activation maps in response to oxycodone. Front Neurosci 10:471. https://doi.org/10.3389/fnins.2016.00471
Nielsen CK, Ross FB, Lotfipour S, Saini KS, Edwards SR, Smith MT (2007) Oxycodone and morphine have distinctly different pharmacological profiles: radioligand binding and behavioural studies in two rat models of neuropathic pain. Pain 132(3):289–300. https://doi.org/10.1016/j.pain.2007.03.022
Ross FB, Smith MT (1997) The intrinsic antinociceptive effects of oxycodone appear to be kappa-opioid receptor mediated. Pain 73(2):151–157
Yang PP, Yeh GC, Yeh TK, Xi J, Loh HH, Law PY, Tao PL (2016) Activation of delta-opioid receptor contributes to the antinociceptive effect of oxycodone in mice. Pharmacol Res 111:867–876. https://doi.org/10.1016/j.phrs.2016.05.034
Cadet JL, Brannock C, Krasnova IN, Jayanthi S, Ladenheim B, McCoy MT, Walther D, Godino A et al (2017) Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence. Mol Psychiatry 22(8):1196–1204. https://doi.org/10.1038/mp.2016.48
Leoncikas V, Wu H, Ward LT, Kierzek AM, Plant NJ (2016) Generation of 2,000 breast cancer metabolic landscapes reveals a poor prognosis group with active serotonin production. Sci Rep 6:19771. https://doi.org/10.1038/srep19771
Fanous S, Goldart EM, Theberge FR, Bossert JM, Shaham Y, Hope BT (2012) Role of orbitofrontal cortex neuronal ensembles in the expression of incubation of heroin craving. J Neurosci Off J Soc Neurosci 32(34):11600–11609. https://doi.org/10.1523/JNEUROSCI.1914-12.2012
Krasnova IN, Gerra MC, Walther D, Jayanthi S, Ladenheim B, McCoy MT, Brannock C, Cadet JL (2017) Compulsive methamphetamine taking in the presence of punishment is associated with increased oxytocin expression in the nucleus accumbens of rats. Sci Rep 7(1):8331. https://doi.org/10.1038/s41598-017-08898-8
Stefanik MT, Milovanovic M, Werner CT, Spainhour JCG, Wolf ME (2018) Withdrawal from cocaine self-administration alters the regulation of protein translation in the nucleus accumbens. Biol Psychiatry 84(3):223–232. https://doi.org/10.1016/j.biopsych.2018.02.012
Torres OV, Jayanthi S, Ladenheim B, McCoy MT, Krasnova IN, Cadet JL (2017) Compulsive methamphetamine taking under punishment is associated with greater cue-induced drug seeking in rats. Behav Brain Res 326:265–271. https://doi.org/10.1016/j.bbr.2017.03.009
Wolf ME (2016) Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci 17(6):351–365. https://doi.org/10.1038/nrn.2016.39
Li X, Carreria MB, Witonsky KR, Zeric T, Lofaro OM, Bossert JM, Zhang J, Surjono F et al (2018) Role of dorsal striatum histone deacetylase 5 in incubation of methamphetamine craving. Biol Psychiatry 84(3):213–222. https://doi.org/10.1016/j.biopsych.2017.12.008
Boscarino JA, Rukstalis M, Hoffman SN, Han JJ, Erlich PM, Gerhard GS, Stewart WF (2010) Risk factors for drug dependence among out-patients on opioid therapy in a large US health-care system. Addiction 105(10):1776–1782. https://doi.org/10.1111/j.1360-0443.2010.03052.x
Rudd RA, Seth P, David F, Scholl L (2016) Increases in drug and opioid-involved overdose deaths - United States, 2010-2015. MMWR Morb Mortal Wkly Rep 65(5051):1445–1452. https://doi.org/10.15585/mmwr.mm655051e1
Zhang Y, Mayer-Blackwell B, Schlussman SD, Randesi M, Butelman ER, Ho A, Ott J, Kreek MJ (2014) Extended access oxycodone self-administration and neurotransmitter receptor gene expression in the dorsal striatum of adult C57BL/6 J mice. Psychopharmacology 231(7):1277–1287. https://doi.org/10.1007/s00213-013-3306-3
Cadet JL, Brannock C, Jayanthi S, Krasnova IN (2015) Transcriptional and epigenetic substrates of methamphetamine addiction and withdrawal: evidence from a long-access self-administration model in the rat. Mol Neurobiol 51(2):696–717. https://doi.org/10.1007/s12035-014-8776-8
Zhang Y, Liang Y, Levran O, Randesi M, Yuferov V, Zhao C, Kreek MJ (2017) Alterations of expression of inflammation/immune-related genes in the dorsal and ventral striatum of adult C57BL/6J mice following chronic oxycodone self-administration: a RNA sequencing study. Psychopharmacology 234(15):2259–2275. https://doi.org/10.1007/s00213-017-4657-y
Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science (New York, NY) 282(5387):298–300
Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y et al (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci Off J Soc Neurosci 26(24):6583–6588. https://doi.org/10.1523/JNEUROSCI.1544-06.2006
Murphy NP, Lam HA, Maidment NT (2001) A comparison of morphine-induced locomotor activity and mesolimbic dopamine release in C57BL6, 129Sv and DBA2 mice. J Neurochem 79(3):626–635
Swain Y, Muelken P, LeSage MG, Gewirtz JC, Harris AC (2018) Locomotor activity does not predict individual differences in morphine self-administration in rats. Pharmacol Biochem Behav 166:48–56. https://doi.org/10.1016/j.pbb.2018.01.008
Koeltzow TE, Vezina P (2005) Locomotor activity and cocaine-seeking behavior during acquisition and reinstatement of operant self-administration behavior in rats. Behav Brain Res 160(2):250–259. https://doi.org/10.1016/j.bbr.2004.12.005
Kosten TR, George TP (2002) The neurobiology of opioid dependence: implications for treatment. Sci Pract Perspect 1(1):13–20
Rajagopal S, Shenoy SK (2018) GPCR desensitization: acute and prolonged phases. Cell Signal 41:9–16. https://doi.org/10.1016/j.cellsig.2017.01.024
Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ et al (2013) Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 65(1):223–254. https://doi.org/10.1124/pr.112.005942
Unterwald EM, Rubenfeld JM, Imai Y, Wang JB, Uhl GR, Kreek MJ (1995) Chronic opioid antagonist administration upregulates mu opioid receptor binding without altering mu opioid receptor mRNA levels. Brain Res Mol Brain Res 33(2):351–355
Unterwald EM, Anton B, To T, Lam H, Evans CJ (1998) Quantitative immunolocalization of mu opioid receptors: regulation by naltrexone. Neuroscience 85(3):897–905
Castelli MP, Melis M, Mameli M, Fadda P, Diaz G, Gessa GL (1997) Chronic morphine and naltrexone fail to modify mu-opioid receptor mRNA levels in the rat brain. Brain Res Mol Brain Res 45(1):149–153
Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10(8):1029–1037. https://doi.org/10.1038/nn1929
Li X, DeJoseph MR, Urban JH, Bahi A, Dreyer JL, Meredith GE, Ford KA, Ferrario CR et al (2013) Different roles of BDNF in nucleus accumbens core versus shell during the incubation of cue-induced cocaine craving and its long-term maintenance. J Neurosci Off J Soc Neurosci 33(3):1130–1142. https://doi.org/10.1523/JNEUROSCI.3082-12.2013
Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18(3–4):533–537. https://doi.org/10.1002/elps.1150180333
Bauernfeind AL, Soderblom EJ, Turner ME, Moseley MA, Ely JJ, Hof PR, Sherwood CC, Wray GA et al (2015) Evolutionary divergence of gene and protein expression in the brains of humans and chimpanzees. Genome Biol Evol 7(8):2276–2288. https://doi.org/10.1093/gbe/evv132
de Sousa AR, Penalva LO, Marcotte EM, Vogel C (2009) Global signatures of protein and mRNA expression levels. Mol BioSyst 5(12):1512–1526. https://doi.org/10.1039/b908315d
Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, Farber CR, Sinsheimer J et al (2011) Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet 7(6):e1001393. https://doi.org/10.1371/journal.pgen.1001393
Salas J, Scherrer JF, Schneider FD, Sullivan MD, Bucholz KK, Burroughs T, Copeland LA, Ahmedani BK et al (2017) New-onset depression following stable, slow, and rapid rate of prescription opioid dose escalation. Pain 158(2):306–312. https://doi.org/10.1097/j.pain.0000000000000763
Scherrer JF, Salas J, Bucholz KK, Schneider FD, Burroughs T, Copeland LA, Sullivan MD, Lustman PJ (2016) New depression diagnosis following prescription of codeine, hydrocodone or oxycodone. Pharmacoepidemiol Drug Saf 25(5):560–568. https://doi.org/10.1002/pds.3999
Scherrer JF, Salas J, Schneider FD, Bucholz KK, Sullivan MD, Copeland LA, Ahmedani BK, Burroughs T et al (2017) Characteristics of new depression diagnoses in patients with and without prior chronic opioid use. J Affect Disord 210:125–129. https://doi.org/10.1016/j.jad.2016.12.027
Carlezon WA Jr, Krystal AD (2016) Kappa-opioid antagonists for psychiatric disorders: from bench to clinical trials. Depress Anxiety 33(10):895–906. https://doi.org/10.1002/da.22500
Mague SD, Pliakas AM, Todtenkopf MS, Tomasiewicz HC, Zhang Y, Stevens WC Jr, Jones RM, Portoghese PS et al (2003) Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther 305(1):323–330. https://doi.org/10.1124/jpet.102.046433
Reindl JD, Rowan K, Carey AN, Peng X, Neumeyer JL, McLaughlin JP (2008) Antidepressant-like effects of the novel kappa opioid antagonist MCL-144B in the forced-swim test. Pharmacology 81(3):229–235. https://doi.org/10.1159/000112867
Steiner H, Gerfen CR (1996) Dynorphin regulates D1 dopamine receptor-mediated responses in the striatum: relative contributions of pre- and postsynaptic mechanisms in dorsal and ventral striatum demonstrated by altered immediate-early gene induction. J Comp Neurol 376(4):530–541. https://doi.org/10.1002/(SICI)1096-9861(19961223)376:4<530::AID-CNE3>3.0.CO;2-2
Le Moine C, Kieffer B, Gaveriaux-Ruff C, Befort K, Bloch B (1994) Delta-opioid receptor gene expression in the mouse forebrain: localization in cholinergic neurons of the striatum. Neuroscience 62(3):635–640
Arenas E, Alberch J, Marsal J (1991) Dopaminergic system mediates only delta-opiate inhibition of endogenous acetylcholine release evoked by glutamate from rat striatal slices. Neuroscience 42(3):707–714
Mulder AH, Wardeh G, Hogenboom F, Frankhuyzen AL (1984) Kappa- and delta-opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release. Nature 308(5956):278–280
Collins AL, Aitken TJ, Greenfield VY, Ostlund SB, Wassum KM (2016) Nucleus accumbens acetylcholine receptors modulate dopamine and motivation. Neuropsychopharmacology 41(12):2830–2838. https://doi.org/10.1038/npp.2016.81
