Moduli spaces of hyperelliptic curves with A and D singularities

Mathematische Zeitschrift - Tập 276 - Trang 299-328 - 2013
Maksym Fedorchuk1,2
1Department of Mathematics, Columbia University, New York, USA
2Department of Mathematics, Boston College, Chestnut Hill, USA

Tóm tắt

We introduce moduli spaces of quasi-admissible hyperelliptic covers with at worst A and D singularities. The stability conditions for these moduli spaces depend on two rational parameters describing allowable singularities. For the extreme values of the parameters, we obtain the stacks of stable limits of $$A_n$$ and $$D_n$$ singularities, and the quotients of the miniversal deformation spaces of these singularities by natural $$\mathbb G _m$$ -actions. We interpret the intermediate spaces as log canonical models of the stacks of stable limits of $$A_n$$ and $$D_n$$ singularities.

Tài liệu tham khảo

Abramovich, D., Corti, A., Vistoli, A.: Twisted bundles and admissible covers. Commun. Algebra 31(8), 3547–3618 (2003) Special issue in honor of Steven L. Kleiman Arnol’d, V.I., Goryunov, V.V., Lyashko, O.V., Vasil’ev, V.A.: Singularity theory I. Springer, Berlin (1998) Arnol’d, V.I.: Critical points of smooth functions, and their normal forms. Uspehi Mat. Nauk 30(5(185)), 3–65 (1975) Arnol’d, V.I.: Local normal forms of functions. Invent. Math. 35, 87–109 (1976) Abramovich, D., Vistoli, A.: Compactifying the space of stable maps. J. Am. Math. Soc. 15(1), 27–75 (2002) Arsie, A., Vistoli, A.: Stacks of cyclic covers of projective spaces. Compos. Math. 140(3), 647–666 (2004) Cadman, C.: Using stacks to impose tangency conditions on curves. Am. J. Math. 129(2), 405–427 (2007) Cautis, S.: The abelian monodromy extension property for families of curves. Math. Ann. 344(3), 717–747 (2009) Casalaina-Martin, S., Laza, R.: Simultaneous semi-stable reduction for curves with ADE singularities. Trans. Am. Math. Soc. 365(5), 2271–2295 (2013) Conrad, B.: The Keel-Mori theorem via stacks. Available at http://math.stanford.edu/conrad/papers/coarsespace.pdf De Concini, C., Procesi, C.: Wonderful models of subspace arrangements. Selecta Mathematica (New Series) 1(3), 459–494 (1995) de Jong, A.J.: Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math. 83, 51–93 (1996) de Jong, A.J., Oort, F.: On extending families of curves. J. Algebraic Geom. 6(3), 545–562 (1997) Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36, 75–109 (1969) Edidin, D., Hassett, B., Kresch, A., Vistoli, A.: Brauer groups and quotient stacks. Am. J. Math. 123(4), 761–777 (2001) Fedorchuk, M.: Moduli of weighted pointed stable curves and log canonical models of \(\overline{\cal M}_{g, n}\). Math. Res. Lett. 18(4), 663–675 (2011) Hassett, B.: Local stable reduction of plane curve singularities. J. Reine Angew. Math. 520, 169–194 (2000) Hassett, B.: Moduli spaces of weighted pointed stable curves. Adv. Math. 173(2), 316–352 (2003) Hassett, B., Hyeon, D.: Log canonical models for the moduli space of curves: the first divisorial contraction. Trans. Am. Math. Soc. 361(8), 4471–4489 (2009) Hassett, B., Hyeon, D.: Log minimal model program for the moduli space of curves: the first flip. Ann. Math. (2) 177(3), 911–968 (2013) Harris, J., Mumford, D.: On the Kodaira dimension of the moduli space of curves. Invent. Math. 67(1), 23–88 (1982) with an appendix by William Fulton Hirsh, T., Martin, B.: Deformations with section: cotangent cohomology, flatness conditions, and modular subgerms. J. Math. Sci. 132(6), 739–756 (2006) Laumon, G., Moret-Bailly, L.: Champs algébriques, vol. 39. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, Berlin (2000) Mond, D., van Straten, D.: The structure of the discriminant of some space-curve singularities. Q. J. Math. 52(3), 355–365 (2001) Pinkham, H.C.: Deformations of algebraic varieties with \(G_{m}\) action. Société Mathématique de France, Paris (1974) Astérisque, No. 20 Tjurina, G.N.: Resolution of singularities of flat deformations of double rational points. Funkcional. Anal. i Priložen. 4(1), 77–83 (1970)