Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Holography không gian moduli và tính hữu hạn của chân không flux
Tóm tắt
Một góc nhìn holographic để nghiên cứu và đặc trưng hóa các không gian trường xuất hiện trong việc thu nhỏ chuỗi được đề xuất. Một sự tương ứng cụ thể được phát triển thông qua việc nghiên cứu các không gian moduli hai chiều trong các chuỗi thu nhỏ siêu đối xứng. Các lý thuyết trên các biên của mỗi không gian moduli được đề xuất tồn tại, với dữ liệu quan trọng được cung cấp bởi một không gian Hilbert, một đại số Sl(2, ℂ), và hai toán tử đặc biệt. Dữ liệu biên này được thúc đẩy bởi lý thuyết Hodge tiệm cận và thực tế rằng metric vật lý trên không gian moduli của các đa tạp Calabi-Yau tiệm cận gần bất kỳ biên khoảng cách vô hạn nào tới một metric Poincaré với sự đồng nhất Sl(2, ℝ). Phần quan trọng của lý thuyết bulk trên không gian moduli là một mô hình sigma cho các trường vật chất có giá trị nhóm. Việc này được thảo luận về khả năng kết hợp với lý thuyết trọng lực hai chiều. Sự khớp nối cổ điển giữa bulk và biên sau đó được đưa ra bởi chứng minh định lý quỹ đạo Sl(2) nổi tiếng của lý thuyết Hodge, được tái cấu trúc trong một ngôn ngữ vật lý hơn. Áp dụng sự tương ứng này vào bức tranh flux trong việc thu nhỏ Calabi-Yau bốn chiều, cho thấy không có đuôi vô hạn của các chân không flux tự đối xứng gần bất kỳ biên đồng chiều một nào. Kết quả tính hữu hạn này là hệ quả của các ràng buộc về sự mở rộng gần biên của các giải pháp bulk phù hợp với dữ liệu biên. Cũng cần chỉ ra rằng có một kết nối nổi bật giữa kết quả tính hữu hạn cho các chân không flux siêu đối xứng và giả thuyết Hodge.
Từ khóa
Tài liệu tham khảo
E. Palti, The Swampland: Introduction and Review, Fortsch. Phys. 67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].
H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].
T.W. Grimm, E. Palti and I. Valenzuela, Infinite Distances in Field Space and Massless Towers of States, JHEP 08 (2018) 143 [arXiv:1802.08264] [INSPIRE].
S.-J. Lee, W. Lerche and T. Weigand, Tensionless Strings and the Weak Gravity Conjecture, JHEP 10 (2018) 164 [arXiv:1808.05958] [INSPIRE].
S.-J. Lee, W. Lerche and T. Weigand, A Stringy Test of the Scalar Weak Gravity Conjecture, Nucl. Phys. B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE].
T.W. Grimm, C. Li and E. Palti, Infinite Distance Networks in Field Space and Charge Orbits, JHEP 03 (2019) 016 [arXiv:1811.02571] [INSPIRE].
P. Corvilain, T.W. Grimm and I. Valenzuela, The Swampland Distance Conjecture for Kähler moduli, JHEP 08 (2019) 075 [arXiv:1812.07548] [INSPIRE].
A. Font, A. Herráez and L.E. Ibáñez, The Swampland Distance Conjecture and Towers of Tensionless Branes, JHEP 08 (2019) 044 [arXiv:1904.05379] [INSPIRE].
S.-J. Lee, W. Lerche and T. Weigand, Emergent Strings, Duality and Weak Coupling Limits for Two-Form Fields, arXiv:1904.06344 [INSPIRE].
F. Marchesano and M. Wiesner, Instantons and infinite distances, JHEP 08 (2019) 088 [arXiv:1904.04848] [INSPIRE].
T.W. Grimm and D. Van De Heisteeg, Infinite Distances and the Axion Weak Gravity Conjecture, JHEP 03 (2020) 020 [arXiv:1905.00901] [INSPIRE].
S.-J. Lee, W. Lerche and T. Weigand, Emergent Strings from Infinite Distance Limits, arXiv:1910.01135 [INSPIRE].
F. Baume, F. Marchesano and M. Wiesner, Instanton Corrections and Emergent Strings, JHEP 04 (2020) 174 [arXiv:1912.02218] [INSPIRE].
M. Enríquez Rojo and E. Plauschinn, Swampland conjectures for type IIB orientifolds with closed-string U(1)s, JHEP 07 (2020) 026 [arXiv:2002.04050] [INSPIRE].
N. Gendler and I. Valenzuela, Merging the weak gravity and distance conjectures using BPS extremal black holes, JHEP 01 (2021) 176 [arXiv:2004.10768] [INSPIRE].
B. Heidenreich and T. Rudelius, Infinite Distance and Zero Gauge Coupling in 5d Supergravity, arXiv:2007.07892 [INSPIRE].
T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].
T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
T.W. Grimm, C. Li and I. Valenzuela, Asymptotic Flux Compactifications and the Swampland, JHEP 06 (2020) 009 [Erratum ibid. 01 (2021) 007] [arXiv:1910.09549] [INSPIRE].
E. Cattani and A. Kaplan, Degenerating variations of Hodge structure, in Théorie de Hodge - Luminy, Juin 1987, Barlet D. and Esnault H. and Elzein F. and Verdier Jean-Louis and Viehweg E. eds, Societé mathématique de France, Astérisque 179-180 (1989).
E. Cattani, F.E. Zein, P.A. Griffiths and L.D. Tráng, Hodge Theory (MN-49), Princeton University Press, Princeton U.S.A (2014) [ISBN: 9780691161341].
K. Hori et al., Mirror symmetry, AMS, Clay Math. Monogr. 1, Providence U.S.A. (2003) [INSPIRE].
M. Kerr and R. Laza, Hodge theory of degenerations, (i): Consequences of the decomposition theorem, arXiv:1901.01896.
M. Kerr and R. Laza, Hodge theory of degenerations, (ii): vanishing cohomology and geometric applications, arXiv:2006.03953.
C.-L. Wang, On the incompleteness of the Weil-Petersson metric along degenerations of Calabi-Yau manifolds, Math. Res. Lett. 4 (1997) 157.
W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973) 211 .
E. Cattani, A. Kaplan and W. Schmid, Degeneration of Hodge Structures, Annals Math. 123 (1986) 457.
S.K. Donaldson, Nahm’s equations and the classification of monopoles, Commun. Math. Phys. 96 (1984) 387 [INSPIRE].
S. Cecotti and C. Vafa, Topological antitopological fusion, Nucl. Phys. B 367 (1991) 359 [INSPIRE].
S. Cecotti, Special Geometry and the Swampland, JHEP 09 (2020) 147 [arXiv:2004.06929] [INSPIRE].
S. Cecotti, Moduli spaces of Calabi-Yau d-folds as gravitational-chiral instantons, JHEP 12 (2020) 008 [arXiv:2007.09992] [INSPIRE].
P. Deligne, Structures de Hodge mixtes réelles, Proc. Sympos. Pure Math. 55 (1994) 509.
S. Lanza, F. Marchesano, L. Martucci and I. Valenzuela, Swampland Conjectures for Strings and Membranes, JHEP 02 (2021) 006 [arXiv:2006.15154] [INSPIRE].
S. Lanza, F. Marchesano, L. Martucci and I. Valenzuela, to appear.
M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].
M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].
S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049] [INSPIRE].
F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].
C. Schnell, Letter to T. Grimm (2020).
T.W. Grimm and C. Schnell, in preparation.
E. Cattani, P. Deligne and A. Kaplan, On the locus of Hodge classes, J. Am. Math .Sci. 8 (1995) 483 [alg-geom/9402009].
H. Hironaka, Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: I, Annals Math. 79 (1964) 109.
E. Viehweg, Quasi-projective Moduli for Polarized Manifolds,Springer Berlin (1995) [DOI].
E. Palti, C. Vafa and T. Weigand, Supersymmetric Protection and the Swampland, JHEP 06 (2020) 168 [arXiv:2003.10452] [INSPIRE].
B. Bastian, T.W. Grimm and D. v. d. Heisteeg, in preparation.
C. Robles, Classification of horizontal SL(2)s, Compos. Math. 152 (2016) 918 [arXiv:1405.3163].
M. Kerr, G.J. Pearlstein and C. Robles, Polarized relations on horizontal SL(2)’s, Doc. Math. 24 (2019) 1295.
Z. Lu, On the geometry of classifying spaces and horizontal slices, Amer. J. Math. 121 (1999) 177 [math/0505579].
Z. Lu, On the Hodge metric of the universal deformation space of Calabi-Yau threefolds, J. Geom. Anal. 11 (2001) 103.
Z. Lu and X. Sun, Weil-Petersson geometry on moduli space of polarized Calabi-Yau manifolds, J. Inst. Math. Jussieu 3 (2004) 185 .
H. Fang and Z. Lu, Generalized Hodge metrics and BCOV torsion on Calabi-Yau moduli, J. reine und angewandte Math. 588 (2005) 49 [math/0310007].
M. Douglas and Z. Lu, On the geometry of moduli space of polarized Calabi-Yau manifolds, math/0603414 [INSPIRE].
Z. Lu and M.R. Douglas, Gauss-Bonnet-Chern theorem on moduli space, Math. Ann. 357 (2013) 469 [arXiv:0902.3839] [INSPIRE].
C. Peters and G. Pearlstein, Differential geometry of the mixed hodge metric, Commun. Anal. Geom. 3 (2019) 671 [arXiv:1407.4082].
M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].
Z. Lu, On the Hodge Metric of the Universal Deformation Space of Calabi-Yau Threefolds, J. Geom. Anal. 11 (2005) 103 [math/0505582].
T.W. Grimm, D. v. d. Heisteeg and J. Monnee, Bulk reconstruction in moduli space holography, (2021) [arXiv:2103.12746].
N.J. Hitchin, On the Construction of Monopoles, Commun. Math. Phys. 89 (1983) 145 [INSPIRE].
C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].
R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].
D. Grumiller, W. Kummer and D.V. Vassilevich, Dilaton gravity in two-dimensions, Phys. Rept. 369 (2002) 327 [hep-th/0204253] [INSPIRE].
D. Grumiller and R. Meyer, Ramifications of lineland, Turk. J. Phys. 30 (2006) 349 [hep-th/0604049] [INSPIRE].
V. de Alfaro, S. Fubini and G. Furlan, Conformal Invariance in Quantum Mechanics, Nuovo Cim. A 34 (1976) 569 [INSPIRE].
C. Chamon, R. Jackiw, S.-Y. Pi and L. Santos, Conformal quantum mechanics as the CFT1 dual to AdS2, Phys. Lett. B 701 (2011) 503 [arXiv:1106.0726] [INSPIRE].
D. Anninos, D.M. Hofman and J. Kruthoff, Charged Quantum Fields in AdS2, SciPost Phys. 7 (2019) 054 [arXiv:1906.00924] [INSPIRE].
T.W. Grimm, F. Ruehle and D. van de Heisteeg, Classifying Calabi-Yau Threefolds Using Infinite Distance Limits, Commun. Math. Phys. 382 (2021) 239 [arXiv:1910.02963] [INSPIRE].
K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].
T. De Jonckheere, Modave lectures on bulk reconstruction in AdS/CFT, PoS Modave2017 (2018) 005 [arXiv:1711.07787] [INSPIRE].
D. Harlow, TASI Lectures on the Emergence of Bulk Physics in AdS/CFT, PoS TASI2017 (2018) 002 [arXiv:1802.01040] [INSPIRE].
T. Eguchi and Y. Tachikawa, Distribution of flux vacua around singular points in Calabi-Yau moduli space, JHEP 01 (2006) 100 [hep-th/0510061] [INSPIRE].
A.P. Braun, N. Johansson, M. Larfors and N.-O. Walliser, Restrictions on infinite sequences of type IIB vacua, JHEP 10 (2011) 091 [arXiv:1108.1394] [INSPIRE].
M.J. Duff, J.T. Liu and R. Minasian, Eleven-dimensional origin of string-string duality: A One loop test, Nucl. Phys. B 452 (1995) 261 [hep-th/9506126] [INSPIRE].
S. Sethi, C. Vafa and E. Witten, Constraints on low dimensional string compactifications, Nucl. Phys. B 480 (1996) 213 [hep-th/9606122] [INSPIRE].
K. Becker and M. Becker, M theory on eight manifolds, Nucl. Phys. B 477 (1996) 155 [hep-th/9605053] [INSPIRE].
K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G - flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].
E. Witten, On flux quantization in M-theory and the effective action, J. Geom. Phys. 22 (1997) 1 [hep-th/9609122] [INSPIRE].
T.W. Grimm, T.G. Pugh and M. Weissenbacher, The effective action of warped M-theory reductions with higher derivative terms — part I, JHEP 01 (2016) 142 [arXiv:1412.5073] [INSPIRE].
T.W. Grimm, T.G. Pugh and M. Weissenbacher, The effective action of warped M-theory reductions with higher-derivative terms - Part II, JHEP 12 (2015) 117 [arXiv:1507.00343] [INSPIRE].
T.W. Grimm and J. Louis, The Effective action of type IIA Calabi-Yau orientifolds, Nucl. Phys. B 718 (2005) 153 [hep-th/0412277] [INSPIRE].
J.-P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in IIA compactifications with general fluxes, Nucl. Phys. B 715 (2005) 211 [hep-th/0411276] [INSPIRE].
O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].
D. Junghans, O-Plane Backreaction and Scale Separation in Type IIA Flux Vacua, Fortsch. Phys. 68 (2020) 2000040 [arXiv:2003.06274] [INSPIRE].
G. Buratti, J. Calderon, A. Mininno and A.M. Uranga, Discrete Symmetries, Weak Coupling Conjecture and Scale Separation in AdS Vacua, JHEP 06 (2020) 083 [arXiv:2003.09740] [INSPIRE].
F. Marchesano, E. Palti, J. Quirant and A. Tomasiello, On supersymmetric AdS4 orientifold vacua, JHEP 08 (2020) 087 [arXiv:2003.13578] [INSPIRE].
S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. 608 (2001) 477] [hep-th/9906070] [INSPIRE].
P. Deligne, The Hodge conjecture, Clay Math. Inst.,The Millennium Prize Problems (2006), pp. 45–53.
M. Demirtas, M. Kim, L. Mcallister and J. Moritz, Vacua with Small Flux Superpotential, Phys. Rev. Lett. 124 (2020) 211603 [arXiv:1912.10047] [INSPIRE].
M. Demirtas, M. Kim, L. McAllister and J. Moritz, Conifold Vacua with Small Flux Superpotential, Fortsch. Phys. 68 (2020) 2000085 [arXiv:2009.03312] [INSPIRE].
R. Álvarez-García, R. Blumenhagen, M. Brinkmann and L. Schlechter, Small Flux Superpotentials for Type IIB Flux Vacua Close to a Conifold, arXiv:2009.03325 [INSPIRE].
C. Schnell, The extended locus of Hodge classes, arXiv:1401.7303.
I. Bena, J. Blåbäck, M. Graña and S. Lüst, The Tadpole Problem, arXiv:2010.10519 [INSPIRE].
S. Andriolo, T.-C. Huang, T. Noumi, H. Ooguri and G. Shiu, Duality and axionic weak gravity, Phys. Rev. D 102 (2020) 046008 [arXiv:2004.13721] [INSPIRE].
