Modulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformation

Chaos - Tập 25 Số 12 - 2015
Xiao‐Yong Wen1,2, Zhenya Yan2
1Beijing Information Science and Technology University 2 Department of Mathematics, School of Applied Science, , Beijing 100192, China
2Institute of Systems Science 1 Key Laboratory of Mathematics Mechanization, , AMSS, Chinese Academy of Sciences, Beijing 100190, China

Tóm tắt

We study higher-order rogue wave (RW) solutions of the coupled integrable dispersive AB system (also called Pedlosky system), which describes the evolution of wave-packets in a marginally stable or unstable baroclinic shear flow in geophysical fluids. We propose its continuous-wave (CW) solutions and existent conditions for their modulation instability to form the rogue waves. A new generalized N-fold Darboux transformation (DT) is proposed in terms of the Taylor series expansion for the spectral parameter in the Darboux matrix and its limit procedure and applied to the CW solutions to generate multi-rogue wave solutions of the coupled AB system, which satisfy the general compatibility condition. The dynamical behaviors of these higher-order rogue wave solutions demonstrate both strong and weak interactions by modulating parameters, in which some weak interactions can generate the abundant triangle, pentagon structures, etc. Particularly, the trajectories of motion of peaks and depressions of profiles of the first-order RWs are explicitly analyzed. The generalized DT method used in this paper can be extended to other nonlinear integrable systems. These results may be useful for understanding the corresponding rogue-wave phenomena in fluid mechanics and related fields.

Từ khóa


Tài liệu tham khảo

1964, Oceanus, 10, 13

1996, Ocean Surface Waves: Their Physics and Prediction

2008, Annu. Rev. Fluid Mech., 40, 287, 10.1146/annurev.fluid.40.111406.102203

2003, Eur. J. Mech. B-Fluid, 22, 603, 10.1016/j.euromechflu.2003.09.002

2000, Physica D, 147, 83, 10.1016/S0167-2789(00)00149-4

2009, Rogue Waves in the Ocean

2007, Nature, 450, 1054, 10.1038/nature06402

2008, Phys. Rev. Lett., 101, 233902, 10.1103/PhysRevLett.101.233902

1983, J. Aust. Math. Soc. Ser. B (Appl. Math.), 25, 16, 10.1017/S0334270000003891

1979, Stud. Appl. Math., 60, 43, 10.1002/sapm197960143

1999, Phys. Scr., T82, 48, 10.1238/Physica.Topical.082a00048

1986, Theor. Math. Phys., 69, 1089, 10.1007/BF01037866

2010, Nat. Phys., 6, 790, 10.1038/nphys1740

2009, Phys. Rev. E, 80, 026601, 10.1103/PhysRevE.80.026601

2009, Phys. Lett. A, 373, 3997, 10.1016/j.physleta.2009.08.053

2011, Phys. Rev. E, 84, 056611, 10.1103/PhysRevE.84.056611

2012, Phys. Rev. E, 86, 056602, 10.1103/PhysRevE.86.056602

2013, Phys. Rev. E, 88, 013207, 10.1103/PhysRevE.88.013207

1967, J. Fluid Mech., 27, 417, 10.1017/S002211206700045X

2009, Phys. Rev. A, 80, 033610, 10.1103/PhysRevA.80.033610

2010, Commun. Theor. Phys., 54, 947, 10.1088/0253-6102/54/5/31

2011, Phys. Lett. A, 375, 4274, 10.1016/j.physleta.2011.09.026

2012, Rep. Prog. Phys., 75, 086401, 10.1088/0034-4885/75/8/086401

2010, Phys. Lett. A, 374, 672, 10.1016/j.physleta.2009.11.030

2010, Phys. Rev. E, 82, 036610, 10.1103/PhysRevE.82.036610

2010, Phys. Rev. E, 82, 026602, 10.1103/PhysRevE.82.026602

2012, J. Math. Anal. Appl., 395, 542, 10.1016/j.jmaa.2012.05.058

2012, Phys. Rev. E, 86, 036604, 10.1103/PhysRevE.86.036604

2012, Phys. Rev. E, 85, 026607, 10.1103/PhysRevE.85.026607

2013, J. Opt., 15, 064010, 10.1088/2040-8978/15/6/064010

2013, Nonlinearity, 26, R93, 10.1088/0951-7715/26/12/R93

2015, J. Phys. A, 48, 215202, 10.1088/1751-8113/48/21/215202

2015, Phys. Rev. E, 92, 012917, 10.1103/PhysRevE.92.012917

2015, Nonlinear Dyn., 79, 2515, 10.1007/s11071-014-1829-8

2013, J. Opt., 15, 064012, 10.1088/2040-8978/15/6/064012

2015, Nonlinear Dyn., 81, 833, 10.1007/s11071-015-2033-1

2015, Chaos, 25, 103112, 10.1063/1.4931594

1972, J. Atmos. Sci., 29, 680, 10.1175/1520-0469(1972)029<0680:FABWP>2.0.CO;2

1979, Proc. R. Soc. London A, 367, 219, 10.1098/rspa.1979.0084

1983, Physica D, 7, 126, 10.1016/0167-2789(83)90123-9

1979, Phys. Scr., 20, 402, 10.1088/0031-8949/20/3-4/015

1981, Proc. R. Soc. Lond. A, 377, 185, 10.1098/rspa.1981.0121

1995, J. Phys. A, 28, 3279, 10.1088/0305-4470/28/11/024

2013, Nonlinear Dyn, 74, 701, 10.1007/s11071-013-0998-1

2015, Appl. Math. Comput., 259, 153, 10.1016/j.amc.2015.02.028

2015, Commun. Nonliear Sci. Numer. Simul., 20, 434, 10.1016/j.cnsns.2014.06.012

2000, J. Math. Phys., 41, 7769, 10.1063/1.1314895

2001, J. Math. Phys., 42, 4327, 10.1063/1.1389288

1991, Darboux Transformation and Solitons