Modulation of gene expression by extracellular pH variations in human fibroblasts: A transcriptomic and proteomic study

Proteomics - Tập 3 Số 5 - Trang 675-688 - 2003
Maja A. Bumke1, Dario Neri2, Giuliano Elia1
1Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Switzerland
2Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Winterthurerstrasse 190, CH‐8057 Zurich, Switzerland Fax: +41‐1‐6356886

Tóm tắt

AbstractHomeostasis of the intracellular ionic concentration, in particular that of hydrogen ions, is pivotal to the maintenance of cell function and viability. Nonetheless, pH fluctuations in both the intracellular and the extracellular compartments can occurr during development, in physiological processes and in disease. The influence of pH variations on gene expression has been studied in different model systems, but only for a limited number of genes. We have performed a broad range analysis of the patterns of gene expression in normal human dermal fibroblasts at two different pH values (in the presence and in the absence of serum), with the aim of getting a deeper insight into the regulation of the transcriptional program as a response to a pH change. Using the Affymetrix gene chip system, we found that the expression of 2068 genes (out of 12 565) was modulated by more than two‐fold at 24, 48 or 72 h after the shift of the culture medium pH to a more acidic value, stanniocalcin 1 being a remarkable example of a strongly up‐regulated gene. Genes displaying a modulated pattern of expression included, among others, cell cycle regulators (consistent with the observation that acidic pH abolishes the growth of fibroblasts in culture) and relevant extracellular matrix (ECM) components. Extracellular matrix protein 2, a protein with a restricted pattern of expression in adult human tissues, was found to be remarkably overexpressed as a consequence of serum starvation. Since ECM components, whose expression is controlled by pH, have been used as targets for biomolecular intervention, we have complemented the Affymetrix analysis with a two‐dimensional polyacrylamide gel electrophoresis analysis of proteins which are differentially secreted by fibroblasts at acidic or basic pH. Mass spectrometric analysis of more than 650 protein spots allowed the identification of 170 protein isoforms or fragments, belonging to 40 different proteins. Some proteins were only expressed at basic pH (including, for instance, tetranectin), while others (e.g., agrin) were only detectable at acidic pH. Some of the identified proteins may represent promising candidate targets for biomedical applications, e.g., for antibody‐mediated vascular targeting strategies.

Từ khóa


Tài liệu tham khảo

10.1002/bies.950150805

Gilbert S. F. 2000p.749.

10.1016/0306-9877(93)90032-L

10.1002/0470868716.ch5

10.1016/S1357-4310(99)01615-9

10.1038/304645a0

10.1038/313481a0

10.1002/(SICI)1097-0215(19960529)66:5<632::AID-IJC9>3.0.CO;2-U

10.1038/334438a0

10.1074/jbc.270.11.6243

10.1089/10849780152389410

10.1200/JCO.2002.20.5.1389

10.1038/sj.onc.1204500

10.1002/jcp.1041620304

10.1113/jphysiol.1993.sp019705

10.1152/ajpcell.1994.267.2.C581

10.1182/blood.V99.5.1659

10.1016/S0022-1759(99)00160-X

Tarli L., 1999, Blood, 94, 192, 10.1182/blood.V94.1.192.413k22_192_198

Viti F., 1999, Cancer Res., 59, 347

Nilsson F., 2001, Cancer Res., 61, 711

10.1038/nbt0302-264

10.1016/S0002-9440(10)65388-6

Viti F., 2000, Chimia, 54, 678, 10.2533/chimia.2000.678

10.1002/ijc.2910520504

10.1016/1044-0305(94)80016-2

10.1002/047084664X.ch12

10.1038/4447

10.1073/pnas.95.25.14863

10.1089/10665270252833217

10.1093/hmg/4.4.589

10.1006/geno.1996.0402

10.1074/jbc.273.21.12770

10.1074/jbc.270.24.14568

10.1073/pnas.84.19.6725

Rosenbloom J., 1991, Crit. Rev. Eukaryot. Gene Expr., 1, 145

10.1074/jbc.272.28.17342

10.1080/10428190290005973

10.1101/gad.9.6.639

10.1038/nm0897-917

10.1006/excr.1995.1177

10.1038/379349a0

10.1073/pnas.94.20.10717

Fujiwara Y., 1995, Oncogene, 10, 891

10.1016/0022-4731(89)90114-3

10.1016/0014-4835(91)90056-K

Allander S. V., 1994, J. Biol. Chem., 269, 10891, 10.1016/S0021-9258(17)34142-X

10.1073/pnas.86.3.802

10.1126/science.256.5060.1205

10.1002/j.1460-2075.1986.tb04530.x

10.1159/000023315

10.1073/pnas.93.5.1792

10.1016/S0167-4781(97)00131-0

10.1007/BF00049521

10.1006/geno.1998.5455

10.1006/geno.1994.1649

10.1042/bst0190824

Muragaki Y., 1994, J. Biol. Chem., 269, 4042, 10.1016/S0021-9258(17)41739-X

10.1128/MCB.19.3.1720

Elia G., 2002, BioWorld, 3, 16

10.1006/jmbi.2001.5276

10.1074/jbc.273.34.21769

10.1083/jcb.108.3.1139

10.1016/S0002-9440(10)65062-6

Fujiwara Y., 2000, Int. J. Oncol., 16, 799

10.1152/physiolgenomics.00035.2002

10.1152/ajprenal.00364.2000

10.1002/(SICI)1097-0215(19980812)77:4<561::AID-IJC15>3.0.CO;2-9

10.1038/sj.bjc.6690823

10.1016/S0167-4889(00)00063-X

10.1038/nbt0402-353

10.1126/science.283.5398.83

10.1016/0014-5793(92)80729-Z

10.1083/jcb.127.6.1767

10.1007/BF00284661

10.1002/elps.1150110415

10.3109/15419069409097262