Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements

Journal of NeuroEngineering and Rehabilitation - Tập 10 - Trang 1-10 - 2013
Emanuela Formaggio1, Silvia Francesca Storti2, Ilaria Boscolo Galazzo2, Marialuisa Gandolfi3, Christian Geroin3, Nicola Smania3, Laura Spezia3, Andreas Waldner4, Antonio Fiaschi1,2, Paolo Manganotti1,2
1Department of Neurophysiology, IRCCS Fondazione Ospedale San Camillo, Venice, Italy
2Clinical Neurophysiology and Functional Neuroimaging Unit, Section of Neurology, Department of Neurological, Neuropsychological, Morphological and Movement Sciences, AOUI of Verona, Verona, Italy
3Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), USO Neurological Rehabilitation, Department of Neurological, Neuropsychological, Morphological and Movement Sciences, AOUI of Verona, Verona, Italy
4Department of Neurological Rehabilitation, Private Hospital “Villa Melitta”, Bolzano, Italy

Tóm tắt

Robot-assisted therapy in patients with neurological disease is an attempt to improve function in a moderate to severe hemiparetic arm. A better understanding of cortical modifications after robot-assisted training could aid in refining rehabilitation therapy protocols for stroke patients. Modifications of cortical activity in healthy subjects were evaluated during voluntary active movement, passive robot-assisted motor movement, and motor imagery tasks performed under unimanual and bimanual protocols. Twenty-one channel electroencephalography (EEG) was recorded with a video EEG system in 8 subjects. The subjects performed robot-assisted tasks using the Bi-Manu Track robot-assisted arm trainer. The motor paradigm was executed during one-day experimental sessions under eleven unimanual and bimanual protocols of active, passive and imaged movements. The event-related-synchronization/desynchronization (ERS/ERD) approach to the EEG data was applied to investigate where movement-related decreases in alpha and beta power were localized. Voluntary active unilateral hand movement was observed to significantly activate the contralateral side; however, bilateral activation was noted in all subjects on both the unilateral and bilateral active tasks, as well as desynchronization of alpha and beta brain oscillations during the passive robot-assisted motor tasks. During active-passive movement when the right hand drove the left one, there was predominant activation in the contralateral side. Conversely, when the left hand drove the right one, activation was bilateral, especially in the alpha range. Finally, significant contralateral EEG desynchronization was observed during the unilateral task and bilateral ERD during the bimanual task. This study suggests new perspectives for the assessment of patients with neurological disease. The findings may be relevant for defining a baseline for future studies investigating the neural correlates of behavioral changes after robot-assisted training in stroke patients.

Tài liệu tham khảo

Krebs HI, Hogan N, Volpe BT, Aisen ML, Edelstein L, Diels C: Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol Health Care. 1999, 7 (6): 419-23. Burgar CG, Lum PS, Shor PC, Van der Loos HF M: Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev. 2000, 37 (6): 663-673. Masiero S, Celia A, Rosati G, Armani M: Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil. 2007, 88 (2): 142-149. 10.1016/j.apmr.2006.10.032. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C: Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003, 84 (6): 915-920. 10.1016/S0003-9993(02)04954-7. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML: Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005, 36 (9): 1960-1966. 10.1161/01.STR.0000177865.37334.ce. Hesse S, Waldner A, Mehrholz J, Tomelleri C, Pohl M, Werner C: Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial. Neurorehabil Neural Repair. 2011, 25 (9): 838-846. 10.1177/1545968311413906. Pignolo L: Robotics in neuro-rehabilitation. J Rehabil Med. 2009, 41: 955-960. 10.2340/16501977-0434. Guye M, Parker GJ, Symms M, Boulby P, Wheeler-Kingshott CA, Salek-Haddadi A, Barker GJ, Duncan JS: Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. NeuroImage. 2003, 19 (4): 1349-1360. 10.1016/S1053-8119(03)00165-4. Newton JM, Sunderland A, Gowland PA: fMRI signal decreases in ipsilateral primary motor cortex during unilateral hand movements are related to duration and side of movement. NeuroImage. 2005, 24 (4): 1080-1087. 10.1016/j.neuroimage.2004.10.003. Stippich C, Ochmann H, Sartor K: Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett. 2002, 331 (1): 50-54. 10.1016/S0304-3940(02)00826-1. Manganotti P, Formaggio E, Storti SF, Avesani M, Acler M, Sala F, Magon S, Zoccatelli G, Pizzini F, Alessandrini F, Fiaschi A, Beltramello : Steady-state activation in somatosensory cortex after changes in stimulus rate during median nerve stimulation. Magn Reson Imaging. 2009, 27 (9): 1175-1186. 10.1016/j.mri.2009.05.009. Manganotti P, Storti SF, Formaggio E, Acler M, Zoccatelli G, Pizzini FB, Alessandrini F, Bertoldo A, Toffolo GM, Bovi P, Beltramello A, Moretto G, Fiaschi A: Effect of median-nerve electrical stimulation on BOLD activity in acute ischemic stroke patients. Clin Neurophysiol. 2012, 123 (1): 142-153. 10.1016/j.clinph.2011.05.028. Ward NS, Brown MM, Thompson AJ, Frackowiak RS: Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain. 2003, 126: 2476-2496. 10.1093/brain/awg245. Calautti C, Leroy F, Guincestre JY, Baron JC: Dynamics of motor network overactivation after striatocapsular stroke: a longitudinal PET study using a fixed-performance paradigm. Stroke. 2001, 32: 2534-2542. 10.1161/hs1101.097401. Weiller C, Jüptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, Müller S, Diener HC, Thilmann AF: Brain representation of active and passive movements. NeuroImage. 1996, 4 (2): 105-10. 10.1006/nimg.1996.0034. Gallien P, Aghulon C, Durufle A, Petrilli S, de Crouy AC, Carsin M, Toulouse P: Magnetoencephalography in stroke: a 1-year follow-up study. Eur J Neurol. 2003, 10: 373-382. 10.1046/j.1468-1331.2003.00593.x. Lange R, Nowak H, Haueisen J, Weiller C: Passive finger movement evoked fields in magnetoencephalography. Exp Brain Res. 2001, 136 (2): 194-199. 10.1007/s002210000581. Kato H, Izumiyama M, Koizumi H, Takahashi A, Itoyama Y: Near-infrared topography as a tool to monitor motor reorganization after hemiparetic stroke: a comparison with functional MRI. Stroke. 2002, 33 (8): 2032-2036. 10.1161/01.STR.0000021903.52901.97. Pfurtscheller G, Aranibar A: Event-related cortical desynchronization detected by power measurement of the scalp EEG. Electroencephalogr Clin Neurophysiol. 1977, 42: 817-826. 10.1016/0013-4694(77)90235-8. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM: Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002, 113 (6): 767-791. 10.1016/S1388-2457(02)00057-3. Chatrian GE, Petersen MC, Lazarte JA: The blocking of the rolandic wicket rhythm and some central changes related to movement. Electroencephalogr Clin Neurophysiol. 1959, 11 (3): 497-510. 10.1016/0013-4694(59)90048-3. Pfurtscheller G, Stancák A, Neuper C: Post-movement beta synchronization. A correlate of an idling motor area?. Electroencephalogr Clin Neurophysiol. 1996, 98: 281-293. 10.1016/0013-4694(95)00258-8. Pfurtscheller G, Stancák A, Edlinger G: On the existence of different types of central beta rhythms below 30 Hz. Electroencephalogr Clin Neurophysiol. 1997, 102: 316-325. 10.1016/S0013-4694(96)96612-2. Pfurtscheller G, Zalaudek K, Neuper C: Event-related beta synchronization after wrist, finger and thumb movement. Electroencephalogr Clin Neurophysiol. 1998, 109: 154-160. 10.1016/S0924-980X(97)00070-2. Stancák A, Pfurtscheller G: Event-related desynchronisation of central beta rhythms in brisk and slow selfpaced finger movements of dominant and nondominant hand. Cogn Brain Res. 1996, 4: 171-184. 10.1016/S0926-6410(96)00031-6. Mazzoleni S, Coscia M, Rossi G, Aliboni S, Posteraro F, Carrozza MC: Effects of an upper limb robot-mediated therapy on paretic upper limb in chronic hemiparetic subjects: a biomechanical and EEG-based approach for functional assessment. Proceedings of the IEEE 11th international conference on rehabilitation robotics. 2009, Kyoto: IEEE, 92-97. Saeki S, Matsushima Y, Hachisuka K: Cortical activation during robotic therapy for a severely affected arm in chronic stroke patient: a case report. J UOEH. 2008, 30 (2): 159-165. Formaggio E, Storti SF, Avesani M, Cerini R, Milanese F, Gasparini A, Acler M, Pozzi Mucelli R, Fiaschi A, Manganotti P: EEG and fMRI coregistration to investigate the cortical oscillatory activities during finger movement. Brain Topogr. 2008, 21 (2): 100-111. 10.1007/s10548-008-0058-1. Storti SF, Formaggio E, Beltramello A, Fiaschi A, Manganotti P: Wavelet analysis as a tool for investigating movement-related cortical oscillations in EEG-fMRI coregistration. Brain Topogr. 2010, 23 (1): 46-57. 10.1007/s10548-009-0117-2. McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR: Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 2000, 12 (3): 177-186. 10.1023/A:1023437823106. Neuper C, Scherer R, Reiner M, Pfurtscheller G: Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res. 2005, 25 (3): 668-677. 10.1016/j.cogbrainres.2005.08.014. Pfurtscheller G, Neuper C: Motor imagery activates primary sensorimotor area in humans. Neurosci Lett. 1997, 239: 65-68. 10.1016/S0304-3940(97)00889-6. Formaggio E, Storti SF, Cerini R, Fiaschi A, Manganotti P: Brain oscillatory activity during motor imagery in EEG-fMRI coregistration. Magn Reson Imaging. 2010, 28 (10): 1403-1412. 10.1016/j.mri.2010.06.030. Alegre M, Labarga A, Gurtubay IG, Iriarte J, Malanda A, Artieda J: Beta electroencephalograph changes during passive movements: sensory afferences contribute to beta event-related desynchronization in humans. Neurosci Lett. 2002, 331: 29-32. 10.1016/S0304-3940(02)00825-X. Cassim F, Monaca C, Szurhaj W, Bourriez JL, Defebvre L, Derambure P, Guieu JD: Does post-movement beta synchronization reflect an idling motor cortex?. Neuroreport. 2001, 12 (17): 3859-3863. 10.1097/00001756-200112040-00051. Müller GR, Neuper C, Rupp R, Keinrath C, Gerner HJ, Pfurtscheller G: Event-related beta EEG changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neurosci Lett. 2003, 340: 143-147. 10.1016/S0304-3940(03)00019-3. Alary F, Doyon B, Loubinoux I, Carel C, Boulanouar K, Ranjeva JP, Celsis P, Chollet F: Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI. NeuroImage. 1998, 8 (4): 377-390. 10.1006/nimg.1998.0377. Buma FE, Lindeman E, Ramsey NF, Kwakkel G: Functional neuroimaging studies of early upper limb recovery after stroke: a systematic review of the literature. Neurorehabil Neural Repair. 2010, 24 (7): 589-608. 10.1177/1545968310364058. Review Oldfield RC: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971, 9 (1): 97-113. 10.1016/0028-3932(71)90067-4. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ: Removing electroencephalographic artifacts by blind source separation. Psychophysiology. 2000, 37: 163-178. 10.1016/S0167-8760(00)00088-X. Leocani L, Toro C, Manganotti P, Zhuang P, Hallett M: Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalogr Clin Neurophysiol. 1997, 104: 199-206. 10.1016/S0168-5597(96)96051-7. Pfurtscheller G, Aranibar A: Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol. 1979, 46: 138-146. 10.1016/0013-4694(79)90063-4. Pfurtscheller G, Neuper C: Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett. 1994, 174: 93-96. 10.1016/0304-3940(94)90127-9. Colebatch JG, Deiber MP, Passingham RE, Friston KJ, Frackowiak RSJ: Regional cerebral blood flow during arm and hand movements in human volunteers. J Neurophysiol. 1991, 65: 1392-1401. Grafton ST, Woods RP, Mazziotta JC: Within-arm somatotopy in human motor areas determined by positron emission tomography imaging of cerebral blood flow. Exp Brain Res. 1993, 95: 172-176. Rao SM, Binder RJ, Bandettini PA, Hammeke TA, Yetkin FZ, Jesmanowicz A, Lisk LM, Morris GL, Mueller WM, Estkowski LD: Functional magnetic resonance imaging of complex human movements. Neurology. 1993, 43: 2311-2318. 10.1212/WNL.43.11.2311. Sabatini U, Chollet F, Rascol O, Celsis P, Rascol A, Lenzi GL, Marc-Vergnes JP: Effect of side and rate of stimulation on cerebral blood flow changes in motor areas during finger movements in humans. J Cereb Blood Flow Metab. 1993, 13: 639-645. 10.1038/jcbfm.1993.82. Sadato N, Campbell G, Ibañez V, Deiber M, Hallett M: Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci. 1996, 16: 2691-2700. Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Hiroshi M, Manabu H, Takashi N, Shugo S, Yasuhiro M, Akio I, Masahito M, Hidenao F, Renin A, Junji K: Both primary motor cortex and supplementary motor area play an important role in complex finger movements. Brain. 1993, 116: 1387-1398. 10.1093/brain/116.6.1387. Bai O, Mari Z, Vorbach S, Hallett M: Assymmetric spatitemporal patters of event-related desynchronization preciding voluntary sequential finger movements: a high-resolution EEG study. Clin Neurophysiol. 2005, 116: 1213-1221. 10.1016/j.clinph.2005.01.006. Kawashima R, Yamada K, Kinomura S, Yamaguchi T, Matsui H, Yoshioka S, Fukuda H: Regional cerebral blood flow changes of cortical motor areas and prefrontal areas in humans related to ipsilateral and contralateral hand movement. Brain Res. 1993, 623 (1): 33-40. 10.1016/0006-8993(93)90006-9. Bawa P, Chalmers GR, Jones KE, Søgaard K, Walsh ML: Control of the wrist joint in humans. Eur J Appl Physiol. 2000, 83 (2-3): 116-127. 10.1007/s004210000270. Review Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P, Leocani L, Hallet M: Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol. 1998, 109: 50-62. 10.1016/S0924-980X(97)00074-X.