Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability

Nature Cell Biology - Tập 8 Số 10 - Trang 1074-1083 - 2006
Won Ho Yang1, Ji Eun Kim1, Hyung Wook Nam2, Jung‐Won Ju1, Hoe Suk Kim1, Yu Sam Kim2, Jin Won Cho2
1Department of Biology, Yonsei University, 134 Shinchon-dong Seodaemun-gu, Seoul, 120-749, Korea
2Protein Network Research Center, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea;

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vousden, K. H. p53: death star. Cell 103, 691–694 (2000).

Hollstein, M. et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551–3555 (1994).

Bargonetti, J. & Manfredi, J. J. Multiple roles of the tumor suppressor p53. Curr. Opin. Oncol. 14, 86–91 (2002).

Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nature Rev. Cancer 4, 793–805 (2004).

Shieh, S. Y., Taya, Y. & Prives, C. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser 20, requires tetramerization. EMBO J. 18, 1815–1823 (1999).

Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000).

Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14, 278–288 (2000).

Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).

Sakaguchi, K. et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J. Biol. Chem. 275, 9278–9283 (2000).

Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).

Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

Barak, Y., Juven, T., Haffner, R. & Oren, M. Mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461–468 (1993).

Bech-Otschir, D. et al. COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J. 20, 1630–1639 (2001).

Ito, A. et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20, 1331–1340 (2001).

Rodriguez, M. S., Desterro, J. M., Lain, S., Lane, D. P. & Hay, R. T. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell. Biol. 20, 8458–8467 (2000).

Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455–6461 (1999).

Gostissa, M. et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 18, 6462–6471 (1999).

Fuchs, S. Y., Lee, C. G., Pan, Z. Q. & Ronai, Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 110, 531 (2002).

Kearse, K. P. & Hart, G. W. Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins. Proc. Natl Acad. Sci. U.S.A. 88, 1701–1705 (1991).

Wells, L., Vosseller, K. & Hart, G. W. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378 (2001).

Hanover, J. A. Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J. 15, 1865–1876 (2001).

Shaw, P., Freeman, J., Bovey, R. & Iggo, R. Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene 12, 921–930 (1996).

Toleman, C., Paterson, A. J., Shin, R. & Kudlow, J. E. Streptozotocin inhibits O-GlcNAcase via the production of a transition state analog. Biochem. Biophys. Res. Commun. 340, 526–534 (2006).

Wells, L. et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics 1, 791–804 (2002).

Chalkley, R. J. & Burlingame, A. L. Identification of novel sites of O-N-acetylglucosamine modification of serum response factor using quadrupole time-of-flight mass spectrometry. Mol. Cell. Proteomics 2, 182–190 (2003).

Lowe, S. W. et al. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810 (1994).

Kang, H. T., Ju, J. W., Cho, J. W. & Hwang, E. S. Down-regulation of Sp1 activity through modulation of O-glycosylation by treatment with a low glucose mimetic, 2-deoxyglucose. J. Biol. Chem. 278, 51223–51231 (2003).

Konrad, R. J., Mikolaenko, I., Tolar, J. F., Liu, K. & Kudlow, J. E. The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic β-cell O-GlcNAc-selective N-acetyl-β-D-glucosaminidase. Biochem. J. 356, 31–41 (2001).

Bech-Otschir, D., Seeger, M. & Dubiel, W. The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis. J. Cell Sci. 115, 467–473 (2002).

Comer, F. I. & Hart, G. W. O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J. Biol. Chem. 275, 29179–29182 (2000).

Clore, G. M. et al. Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nature Struct. Biol. 2, 321–333 (1995).

Kawaguchi, T. et al. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene 24, 6976–6981 (2005).

Saito, S. et al. Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J. Biol. Chem. 278, 37536–37544 (2003).

Prives, C., & Hall, P. A. The p53 pathway. J. Pathol. 187, 112–126 (1999).

Schon, O., Friedler, A., Bycroft, M., Freund, S. M., & Fersht, A. R. Molecular mechanism of the interaction between MDM2 and p53. J. Mol. Biol. 323, 491–501 (2002).

Canadillas, J. M. et al. Solution structure of p53 core domain: structural basis for its instability. Proc. Natl Acad. Sci. USA 103, 2109–2114 (2006).

Cheng, X., Cole, R. N., Zaia, J. & Hart, G. W. Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor β. Biochemistry 39, 11609–11620 (2000).

Cheng, X. & Hart, G. W. Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor β: post-translational regulation of turnover and transactivation activity. J. Biol. Chem. 276, 10570–10575 (2001).

Gao, Y., Parker, G. J. & Hart, G. W. Streptozotocin-induced β-cell death is independent of its inhibition of O-GlcNAcase in pancreatic Min6 cells. Arch. Biochem. Biophys. 383, 296–302 (2000).

Haltiwanger, R. S., Grove, K. & Philipsberg, G. A. Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-β-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate. J. Biol. Chem. 273, 3611–3617 (1998).

Zhang, F. et al. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115, 715–725 (2003).

Liu, K. et al. Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism. J. Neurochem. 89, 1044–1055 (2004).

Fiordaliso, F. et al. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50, 2363–2375 (2001).

Licitra, L. et al. Prediction of TP53 status for primary cisplatin, fluorouracil, and leucovorin chemotherapy in ethmoid sinus intestinal-type adenocarcinoma. J. Clin. Oncol. 22, 4901–4906 (2004).

Hsu, C. H., Yang, S. A., Wang, J. Y., Yu, H. S. & Lin, S. R. Mutational spectrum of p53 gene in arsenic-related skin cancers from the blackfoot disease endemic area of Taiwan. Br. J. Cancer 80, 1080–1086 (1999).

Morgan, S. E. et al. Differences in mutant p53 protein stability and functional activity in teniposide-sensitive and -resistant human leukemic CEM cells. Oncogene 19, 5010–5019 (2000).

Ryu, J. et al. Intracellular delivery of p53 fused to the basic domain of HIV-1 tat. Mol. Cells 17, 353–359 (2004).

Wang, W., Takimoto, R., Rastinejad, F. & El-Deiry, W. S. Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol. Cell. Biol. 23, 2171–2181 (2003).