Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình hóa các đạo hàm hình học cho các bài toán tiếp xúc
Tóm tắt
Vấn đề tối ưu hóa hình học được xem xét cho các bài toán ranh giới tự do thuộc loại chướng ngại vật mỏng. Công thức cho các hạng mục đầu tiên của sự tiệm cận cho các functional năng lượng được suy ra. Độ chính xác của các hạng mục thu được được xác minh bằng phương pháp số. Tính khả vi hình học của các nghiệm cho các bất đẳng thức biến thiên được thiết lập. Cụ thể, sự mở rộng tiệm cận ngoài, được gọi là, cho các nghiệm của các bài toán tiếp xúc trong đàn hồi liên quan đến sự nhiễu loạn kỳ dị của miền hình học phụ thuộc vào tham số nhỏ, được suy ra thông qua một ứng dụng của phân tích không nhẵn. Những kết quả này dẫn đến các đạo hàm hình học của các functional hình dạng cho các bài toán tiếp xúc. Các đạo hàm hình học này được sử dụng trong các phương pháp số của việc tối ưu hóa hình dạng và hình học đồng thời.
Từ khóa
#tối ưu hóa hình học #bài toán tiếp xúc #đạo hàm hình học #bất đẳng thức biến thiên #phân tích không nhẵnTài liệu tham khảo
H. Ammari, H. Kang, G. Nakamura, K. Tanuma: Complete Asymptotic Expansions of Solutions of the System of Elastostatics in the Presence of Inhomogeneities of Small Diameter, J. Elasticity 67 (2002), pp. 97–129.
I.I. Argatov, S.A. Nazarov: Asymptotic solution to the Signorini problem with small parts of the free boundary, Siberian Mat. Zh. 35 (1994), no. 2. pp. 258-277 (English transl.: Sib. Math. J. 35 (1994), no. 2, pp. 231–249).
I.I. Argatov, S.A. Nazarov: Asymptotic solution of the problem of an elastic body lying on several small supports, Prikl. Mat. Mekh. 58 (1994), no. 2, pp. 110-118 (English transl.: J. Appl. Math. Mech. 58 (1994) no. 2, pp. 303–311).
I.I. Argatov, S.A. Nazarov: Asymptotic solution of the Signorini problem with an obstacle on a thin elongated set, Mat. sbornik 187 (1996), no. 10, pp. 3-32 (English transl.: Math. Sbornik. 187 (1996), no. 10, pp. 1411–1442).
I.I. Argatov, J. Sokolowski: On asymptotic behaviour of the energy functional for the Signorini problem under small singular perturbation of the domain, Journal of Computational Mathematics and Mathematical Physics, 43 (2003), pp. 742–756.
M.O. Bašeleišvili: An analog of the Poisson formula in elasticity, (Georgian, with Russian abstract), Trudy Wyčislitelnovo Centra AN Gruzinskoi SSR 1 (1960), pp. 97–101.
F.A. Berezin, L.D.Faddeev: Remark on the Schrödinger equation ith singular potential, Dokl. Akad. Nauk SSSR 137 (1961) pp. 1011-1014 (Engl transl. in Soviet Math. Dokl 2 (1961) pp. 372–375).
S. Garreau, Ph. Guillaume, M. Masmoudi: The topological asymptotic for PDE systems: the elasticity case: SIAM Journal on Control and Optimization 39 (2001) no. 6, pp. 1756–1778.
A.M. Il'in: Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translations of Mathematical Monographs, AMS 102 (1992).
L. Jackowska-Strumiłło, J. Sokołowski, A. Żochowski: The topological derivative method and artificial neural networks for numerical solution of shape inverse problems, RR-3739, INRIA-Lorraine, 1999.
L. Jackowska-Strumiłło, J. Sokołowski, A. Żochowski, A. Henrot: On numerical solution of shape inverse problems, Computational Optimization and Applications 23(2002), pp. 231–255.
J. Jarušek, M. Krbec, M. Rao, J. Sokołowski: Conical differentiability for evolution variational inequalities, Journal of Differential Equations, 193(2003), pp. 131–146.
I.V. Kamotski, S.A. Nazarov: Spectral problems in singular perturbed domains and self adjoint extensions of differential operators, Trudy St.-Petersburg Mat. Obshch. 6(1998), pp. 151–212 (English transl. in Proceedings of the St. Petersburg Mathematical Society, 6(2000) pp. 127-181, Amer. Math. Soc. Transl. Ser. 2, 199, Amer. Math. Soc., Providence, RI).
S.K. Kanaun, V.M. Levin: The effective field method in the mechanics of composite materials, (Russian), Izdatel'stvo Petrozavodskogo Universiteta, Petrozavodsk, 1993.
T. Lewinski, J. Sokolowski: Optimal shells formed on a sphere. The topological derivative method, RR-3495, INRIA-Lorraine, 1998.
T. Lewinski, J. Sokolowski: Topological derivative for nucleation of non-circular voids, R.Gulliver, W.Littman, R.Triggiani (Eds), Differential Geometric Methods in the Control of Partial Differential Equations, 1999 AMS-IMS-SIAM Joint Summer Research Conference. Univ. of Colorado, Boulder June 27-July 1, 1999, Contemporary Mathematics, American Math. Soc. 268(2000) pp. 341–361.
T. Lewinski, J. Sokolowski: Energy change due to appearing of cavities in elastic solids, Int. J. Solids & Structures 40(2003), pp. 1765–1803.
T. Lewinski, J. Sokolowski, A. Żochowski: Justification of the bubble method for the compliance minimization problems of plates and spherical shells, CD-ROM, 3rd World Congress of Structural and Multidisciplinary Optimization (WCSMO-3) Buffalo/Niagara Falls, New York, May 17–21, 1999.
W.G. Mazja, S.A. Nazarov: The asymptotic behavior of energy integrals under small perturbations of the boundary near corner points and conical points, Trudy Moskov. Mat. Obshch. 50 (1987) pp. 79-129 (English transl.: Trans. Mosc. Math. Soc. 50 (1987) pp. 77–127).
W.G. Mazja, S.A. Nazarov, B.A. Plamenevskii: Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Vol. 1, 2, Basel: Birkhäuser Verlag, 2000.
S.A. Nazarov: Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives, Izv. Akad. Nauk SSSR. Ser. Mat. 54 (1990), no. 4, pp. 754-773 (English transl.: Math. USSR. Izvestiya. 37 (1991), no. 1, pp. 97–117).
S.A. Nazarov: Perturbations of solutions of the Signorini problem for a second-order scalar equation, Mat. Zametki. 47 (1990) no. 1, pp. 115-126 (English transl.: Math. Notes. 47 (1990) no. 1, pp. 75–82).
S.A. Nazarov: Asymptotic solution to a problem with small obstacles, Differentsial'nye Uravneniya 31 (1995) no. 6, pp. 1031-1041 (English transl.: Differential equations 31 (1995) no. 6, pp. 965–974)
S.A. Nazarov: Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions, American Mathematical Society Translations (2) 198 (1999), pp. 77–125.
S.A. Nazarov, B. A. Plamenevsky: Elliptic Problems in Domains with Piecewise Smooth Boundaries, De Gruyter Exposition in Mathematics 13, Walter de Gruyter, 1994.
S.A. Nazarov, J. Sokołowski: Asymptotic analysis of shape functionals, Journal de Mathématiques pures et appliquées, 82-2(2003), pp. 125–196.
S.A. Nazarov, J. Sokolowski: Self adjoint extensions for the Neumann Laplacian in application to shape optimization, Les prépublications de l'Institut Élie Cartan 9/2003.
B.S. Pavlov: The theory of extension and explicitly solvable models, Uspehi Mat. Nauk42 (1987), no. 6, pp. 99-131 (Engl transl. in Soviet Math. Surveys 42 (1987), no. 6, pp. 127–168).
M. Rao, J. Sokołowski: Non-linear balayage and applications, Illinois J. Math. 44 (2000), pp. 310–328.
M. Rao, J. Sokołowski: Tangent sets in Banach spaces and applications to variational inequalities, Les prépublications de l'Institut Élie Cartan 42/2000.
J. Sokołowski, J-P. Zolesio: Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer Verlag, 1992.
J. Sokołowski, A. Żochowski: On topological derivatwive in shape optimisation, INRIA-Lorraine, Rapport de Recherche No. 3170, 1997.
J. Sokołowski, A. Żochowski: On topological derivative in shape optimization, SIAM Journal on Control and Optimization. 37 (1999), no. 4 , pp. 1251–1272.
J. Sokołowski, A. Żochowski: Topological derivative for optimal control problems, Control and Cybernetics 28 (1999), no. 3, pp. 611–626.
J. Sokołowski, A. Żochowski: Topological derivatives for elliptic problems, Inverse Problems, 15 (1999), no. 1, pp. 123–134.
J. Sokołowski, A. Żochowski: Topological derivatives of shape functionals for elasticity systems, Mechanics of Structures and Machines 29 (2001), pp. 333–351.
J. Sokołowski, A. Żochowski: Optimality conditions for simultaneous topology and shape optimization, SIAM Journal on Control and Optimization, 42 (2003), pp. 1198–1221.
J. Sokołowski, A. Żochowski: Topological derivatives for obstacle problems, Les prépublications de l'Institut Élie Cartan 12/2005.