Modeling the inactivation of psychrotrophic Bacillus cereus spores in beef slurry by 600 MPa HPP combined with 38–70 °C: Comparing with thermal processing and estimating the energy requirements
Tài liệu tham khảo
Ababouch, 1987, Effect of thermal treatments in oils on bacterial spore survival, J. Appl. Bacteriol., 62, 491, 10.1111/j.1365-2672.1987.tb02681.x
Afchain, 2008, Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods, Int. J. Food Microbiol., 128, 165, 10.1016/j.ijfoodmicro.2008.07.028
Ahmed, 1983, Incidence of Bacillus cereus in milk and some milk products, J. Food Prot., 46, 126, 10.4315/0362-028X-46.2.126
Aoyama, 2005, Non-thermal inactivation of Bacillus spores by pressure-holding, Food Sci. Technol. Res., 11, 324, 10.3136/fstr.11.324
Arroyo, 1997, Effect of high pressure on the reduction of microbial populations in vegetables, J. Appl. Microbiol., 82, 735, 10.1046/j.1365-2672.1997.00149.x
Bermúdez-Aguirre, 2012, Inactivation kinetics of Salmonella spp. under thermal and emerging treatments: a review, Food Res. Int., 45, 700, 10.1016/j.foodres.2011.05.040
Bigelow, 1921, The logarithmic nature of thermal death time curves, J. Infect. Dis., 29, 528, 10.1093/infdis/29.5.528
Byrne, 2006, Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll, Food Microbiol., 23, 803, 10.1016/j.fm.2006.02.002
Carlin, 2000, Research on factors allowing a risk assessment of spore-forming pathogenic bacteria in cooked chilled foods containing vegetables: a FAIR collaborative project, Int. J. Food Microbiol., 60, 117, 10.1016/S0168-1605(00)00304-4
Carlin, 2000, Spore-forming bacteria in commercial cooked, pasteurised and chilled vegetable purees, Food Microbiol., 17, 153, 10.1006/fmic.1999.0299
Casadei, 2001, Heat resistance of Bacillus cereus, Salmonella typhimurium and Lactobacillus delbrueckii in relation to pH and ethanol, Int. J. Food Microbiol., 63, 125, 10.1016/S0168-1605(00)00465-7
Choma, 2000, Prevalence, characterization and growth of Bacillus cereus in commercial cooked chilled foods containing vegetables, J. Appl. Microbiol., 88, 617, 10.1046/j.1365-2672.2000.00998.x
Christiansson, 1989, Toxin production by Bacillus cereus dairy isolates in milk at low temperatures, Appl. Environ. Microbiol., 55, 2595, 10.1128/aem.55.10.2595-2600.1989
Cullen, 2012, Status and trends of novel thermal and non-thermal technologies for fluid foods, 1
Cunha, 1998, Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function, J. Food Eng., 37, 175, 10.1016/S0260-8774(98)00085-5
Daelman, 2013, A quantitative microbiological exposure assessment model for Bacillus cereus in repfeds, Int. J. Food Microbiol., 166, 433, 10.1016/j.ijfoodmicro.2013.08.004
Daryaei, 2013, Kinetics of Bacillus coagulans spore inactivation in tomato juice by combined pressure–heat treatment, Food Control, 30, 168, 10.1016/j.foodcont.2012.06.031
Daryaei, 2013, Kinetics of Bacillus cereus spore inactivation in cooked rice by combined pressure–heat treatment, J. Food Prot., 76, 616, 10.4315/0362-028X.JFP-12-447
Dierick, 2005, Fatal family outbreak of Bacillus cereus-associated food poisoning, J. Clin. Microbiol., 43, 4277, 10.1128/JCM.43.8.4277-4279.2005
EFSA., 2005, Bacillus cereus and other Bacillus spp. in foodstuffs, EFSA J., 175, 1
Evelyn, 2015, Thermosonication versus thermal processing of skim milk and beef slurry: modeling the inactivation kinetics of psychrotrophic Bacillus cereus spores, Food Res. Int., 67, 67, 10.1016/j.foodres.2014.10.028
Evelyn, 2015, High pressure processing of milk: Modeling the inactivation of psychrotrophic Bacillus cereus spores at 38–70°C, J. Food Eng., 165, 141, 10.1016/j.jfoodeng.2015.06.017
Evelyn, 2015, Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing, Int. J. Food Microbiol., 214, 129, 10.1016/j.ijfoodmicro.2015.07.031
Evelyn, 2016, Modeling the inactivation of Neosartorya fischeri ascospores in apple juice by high pressure, power ultrasound and thermal processing, Food Control, 59, 530, 10.1016/j.foodcont.2015.06.033
Evelyn, 2016, High pressure thermal processing for the inactivation of Clostridium perfringens spores in beef slurry, Innov. Food. Sci. Emerg., 33, 26, 10.1016/j.ifset.2015.12.021
Evreux, 2007, A case of fatal neonatal Bacillus cereus meningitis, Archives de pédiatrie, 14, 365, 10.1016/j.arcped.2007.01.009
Fernández, 2001, Effect of heat activation and inactivation conditions on germination and thermal resistance parameters of Bacillus cereus spores, Int. J. Food Microbiol., 63, 257, 10.1016/S0168-1605(00)00454-2
Fornari, 1995, Inactivation of Bacillus endospores by high-pressure treatment, Ind. Conserv., 70, 259
Gervilla, 2000, High pressure inactivation of microorganisms inoculated into ovine milk of different fat contents, J. Dairy Sci., 83, 674, 10.3168/jds.S0022-0302(00)74928-9
Ghelardi, 2002, Identification and characterization of toxigenic Bacillus cereus isolates responsible for two food poisoning outbreaks, FEMS Microbiol. Lett., 208, 129, 10.1111/j.1574-6968.2002.tb11072.x
Gola, 1996, Inactivation of bacterial spores in phosphate buffer and in vegetable cream treated with high pressures, 253
Granum, 1997, Bacillus cereus and its food poisoning toxins, FEMS Microbiol. Lett., 157, 223, 10.1111/j.1574-6968.1997.tb12776.x
Guinebretiere, 2003, Sources of Bacillus cereus contamination in a pasteurized zucchini puree processing line, differentiated by two PCR-based methods, FEMS Microbiol. Ecol., 43, 207
Hendrickx, 2011, The importance of endospore-forming bacteria originating from soil for contamination of industrial food processing, Appl. Environ. Soil Sci., 2011, 1, 10.1155/2011/561975
Jenson, 2003, Bacillus cereus and other Bacillus species, 445
Johnson, 1982, Germination and heat resistance of Bacillus cereus spores from strains associated with diarrheal and emetic food borne illnesses, J. Food Sci., 47, 1268, 10.1111/j.1365-2621.1982.tb07663.x
Ju, 2008, Response of Bacillus cereus spores to high hydrostatic pressure and moderate heat, LWT – Food Sci. Technol., 41, 2104, 10.1016/j.lwt.2007.11.011
Kell, 1975, Density, thermal expansivity, and compressibility of liquid water from 0 to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale, J. Chem. Eng. Data, 20, 97, 10.1021/je60064a005
Lopez-Pedemonte, 2003, Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with the addition of nisin or lysozyme, J. Dairy Sci., 86, 3075, 10.3168/jds.S0022-0302(03)73907-1
Luby, 1993, A large outbreak of gastroenteritis caused by diarrheal toxin-producing Bacillus cereus, J. Infect. Dis., 167, 1452, 10.1093/infdis/167.6.1452
Luu-Thi, 2014, Kinetic study of Bacillus cereus spore inactivation by high pressure high temperature treatment, Innov. Food Sci. Emerg., 26, 12, 10.1016/j.ifset.2014.07.005
Malakar, 2004, Modeling the prevalence of Bacillus cereus spores during the production of a cooked chilled vegetable product, J. Food Prot., 67, 939, 10.4315/0362-028X-67.5.939
Marco, 2011, Effect of olive powder and high hydrostatic pressure on the inactivation of Bacillus cereus spores in a reference medium, Foodborne Pathog. Dis., 8, 681, 10.1089/fpd.2010.0712
Margosch, 2006, High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature, Appl. Environ. Microbiol., 72, 3476, 10.1128/AEM.72.5.3476-3481.2006
Mazas, 1995, Effects of sporulation media and strain on thermal resistance of Bacillus cereus spores, Int. J. Food Sci. Technol., 30, 71, 10.1111/j.1365-2621.1995.tb01948.x
McClements, 2001, The effect of growth stage and growth temperature on high hydrostatic pressure inactivation of some psychrotrophic bacteria in milk, J. Food Prot., 64, 514, 10.4315/0362-028X-64.4.514
Membré, 2006, A probabilistic modeling approach in thermal inactivation: estimation of postprocess Bacillus cereus spore prevalence and concentration, J. Food Prot., 69, 118, 10.4315/0362-028X-69.1.118
Meyer, R.S., 2000. Ultra high pressure, high temperature food preservation process. US patent. PCT/US1999/002094.
Milani, 2016, High pressure processing and thermosonication of beer: comparing the energy requirements and Saccharomyces cerevisiae ascospores inactivation with thermal processing and modeling, J. Food Eng., 181, 35, 10.1016/j.jfoodeng.2016.02.023
Montville, 2005, Thermal resistance of spores from virulent strains of Bacillus anthracis and potential surrogates, J. Food Prot., 68, 2362, 10.4315/0362-028X-68.11.2362
Patterson, 2005, Microbiology of pressure-treated foods, Appl. Microbiol., 98, 1400, 10.1111/j.1365-2672.2005.02564.x
Patterson, 1995, Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods, J. Food Prot., 58, 524, 10.4315/0362-028X-58.5.524
Peleg, 2000, Microbial survival curves — the reality of flat “shoulders” and absolute thermal death times, Food Res. Int., 33, 531, 10.1016/S0963-9969(00)00088-0
Peleg, 1998, Reinterpretation of microbial survival curves, Crit. Rev. Food Sci., 38, 353, 10.1080/10408699891274246
Raso, 1998, Sporulation temperature affects initiation of germination and inactivation by high hydrostatic pressure of Bacillus cereus, J. Appl. Microbiol., 85, 17, 10.1046/j.1365-2672.1998.00460.x
Reineke, 2011, The impact of high pressure and temperature on bacterial spores: inactivation mechanisms of Bacillus subtilis above 500MPa, J. Food Sci., 76, M189, 10.1111/j.1750-3841.2011.02066.x
Reineke, 2012, The different pathways of spore germination and inactivation in dependence of pressure and temperature, Innov. Food Sci. Emerg., 13, 31, 10.1016/j.ifset.2011.09.006
Robertson, 2008, Bacillus spore inactivation differences after combined mild temperature and high pressure processing using two pressurizing fluids, J. Food Prot., 71, 1186, 10.4315/0362-028X-71.6.1186
Rodriguez-Gonzalez, 2015, Energy requirements for alternative food processing technologies – principles, assumptions, and evaluation of efficiency, Compr. Rev. Food Sci. Food Saf., 14, 536, 10.1111/1541-4337.12142
Røssland, 2005, Production of antimicrobial metabolites by strains of Lactobacillus or Lactococcus co-cultured with Bacillus cereus in milk, Int. J. Food Microbiol., 98, 193, 10.1016/j.ijfoodmicro.2004.06.003
Rovere, 1998, Studies on bacterial spores by combined high pressure–heat treatments: possibility to sterilize low acid foods, 355
Samapundo, 2011, The influence of headspace and dissolved oxygen level on growth and haemolytic BL enterotoxin production of a psychrotolerant Bacillus weihenstephanensis isolate on potato based ready-to-eat food products, Food Microbiol., 28, 298, 10.1016/j.fm.2010.04.013
Schoeni, 2005, Bacillus cereus food poisoning and its toxins, J. Food Prot., 68, 636, 10.4315/0362-028X-68.3.636
Scurrah, 2006, Inactivation of Bacillus spores in reconstituted skim milk by combined high pressure and heat treatment, J. Appl. Microbiol., 101, 172, 10.1111/j.1365-2672.2006.02897.x
Shearer, 2000, Bacterial spore inhibition and inactivation in foods by pressure, chemical preservatives, and mild heat, J. Food Prot., 63, 1503, 10.4315/0362-028X-63.11.1503
Shigeta, 2007, Hydrostatic pressure-induced germination and inactivation of Bacillus spores in the presence or absence of nutrients, Food Sci. Technol. Res., 13, 193, 10.3136/fstr.13.193
Silva, 2010, Non-proteolytic Clostridium botulinum spores in low-acid cold-distributed foods and design of pasteurization processes, Trends Food Sci. Technol., 21, 95, 10.1016/j.tifs.2009.10.011
Silva, 2014, Thermal processes: pasteurization, 577
Silva, 2012, Bacterial spore inactivation at 45–65°C using high pressure processing: study of Alicyclobacillus acidoterrestris in orange juice, Food Microbiol., 32, 206, 10.1016/j.fm.2012.04.019
Simpson, 1997, The effect of high hydrostatic pressure on Listeria monocytogenes in phosphate buffered saline and model food systems, J. Appl. Microbiol., 83, 181, 10.1046/j.1365-2672.1997.00215.x
Smith, 2005
Slaten, 1992, An outbreak of Bacillus cereus food poisoning – are caterers supervised sufficiently, Public Health Rep., 107, 477
Styles, 1991, Response of Listeria monocytogenes and Vibrio parahaemolyticus to high hydrostatic pressure, J. Food Sci., 56, 1404, 10.1111/j.1365-2621.1991.tb04784.x
Sulaiman, 2013, High pressure processing, thermal processing and freezing of ‘Camarosa’ strawberry for the inactivation of polyphenoloxidase and control of browning, Food Control, 33, 424, 10.1016/j.foodcont.2013.03.008
Sulaiman, 2015, Modeling the polyphenoloxidase inactivation kinetics in pear, apple and strawberry purees after high pressure processing, J. Food Eng., 147, 89, 10.1016/j.jfoodeng.2014.09.030
Thippareddi, 2009, Predictive modeling of pathogen growth in cooked meats, 559
Tola, 2014, Combined effects of high pressure, moderate heat and pH on the inactivation kinetics of Bacillus licheniformis spores in carrot juice, Food Res. Int., 62, 50, 10.1016/j.foodres.2014.02.006
USFDA, 2012
Valero, 2007, Survival, isolation and characterization of a psychrotrophic Bacillus cereus strain from a mayonnaise-based ready-to-eat vegetable salad, Food Microbiol., 24, 671, 10.1016/j.fm.2007.04.005
van Boekel, 2002, On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells, Int. J. Food Microbiol., 74, 139, 10.1016/S0168-1605(01)00742-5
Van Opstal, 2004, Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments, Int. J. Food Microbiol., 92, 227, 10.1016/j.ijfoodmicro.2003.09.011
Vercammen, 2012, Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce, Int. J. Food Microbiol., 152, 162, 10.1016/j.ijfoodmicro.2011.02.019
Weibull, 1951, A statistical distribution function of wide applicability, J. Appl. Mech., 18, 293, 10.1115/1.4010337
Wimalaratne, 2009