Modeling the Origin of Anthropogenic Black Carbon and Its Climatic Effect Over the Tibetan Plateau and Surrounding Regions

Journal of Geophysical Research D: Atmospheres - Tập 123 Số 2 - Trang 671-692 - 2018
Junhua Yang1, Shichang Kang2,1, Zhenming Ji3, Deliang Chen4
1State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
2CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
3School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China
4Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Tóm tắt

Abstract

Black carbon (BC) in snow/ice induces enhanced snow and glacier melting. As over 60% of atmospheric BC is emitted from anthropogenic sources, which directly impacts the distribution and concentration of BC in snow/ice, it is essential to assess the origin of anthropogenic BC transported to the Tibetan Plateau (TP) where there are few direct emissions attributable to local human activities. In this study, we used a regional climate‐atmospheric chemistry model and a set of BC scenarios for quantitative evaluation of the impact of anthropogenic BC from various sources and its climate effects over the TP in 2013. The results showed that the model performed well in terms of climatology, aerosol optical properties, and near‐surface concentrations, which indicates that this modeling framework is appropriate to characterize anthropogenic BC source‐receptor relationships over the TP. The simulated surface concentration associated with the anthropogenic sources showed seasonal differences. In the monsoon season, the contribution of anthropogenic BC was less than in the nonmonsoon season. In the nonmonsoon season, westerly winds prevailed and transported BC from central Asia and north India to the western TP. In the monsoon season, BC aerosol was transported to the middle‐upper troposphere over the Indo‐Gangetic Plain and crossed the Himalayas via southwesterly winds. The majority of anthropogenic BC over the TP was transported from South Asia, which contributed to 40%–80% (mean of 61.3%) of surface BC in the nonmonsoon season, and 10%–50% (mean of 19.4%) in the monsoon season. For the northeastern TP, anthropogenic BC from eastern China accounted for less than 10% of the total in the nonmonsoon season but can be up to 50% in the monsoon season. Averaged over the TP, the eastern China anthropogenic sources accounted for 6.2% and 8.4% of surface BC in the nonmonsoon and monsoon seasons, respectively. The anthropogenic BC induced negative radiative forcing and cooling effects at the near surface over the TP.

Từ khóa


Tài liệu tham khảo

10.1029/2011JD016722

10.5194/acp‐10‐7325‐2010

10.4209/aaqr.2012.05.0138

10.1126/science.1215828

10.1029/2006GB002840

10.1002/jgrd.50171

10.1360/N972014‐01370

10.1029/2000JD900384

10.1002/2014GL062404

10.1007/s11356‐014‐3496‐1

10.3189/172756406781812005

10.1007/s11434‐006‐1396‐6

10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2

10.1029/2002JD003296

10.5194/gmd‐3‐43‐2010

10.1029/2005JD006721

10.5194/acp‐9‐2481‐2009

10.1029/2006JD008003

10.5194/gmd‐4‐419‐2011

10.1007/s00703‐008‐0296‐5

10.5194/acp‐15‐4279‐2015

10.1029/2002GL015311

10.1016/j.atmosenv.2005.04.027

Guenther A., 2006, Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmospheric Chemistry and Physics, 7, 4329

10.1029/2007GL030021

10.1038/NCLIMATE1433

10.1073/pnas.2237157100

10.1029/2005JD005776

10.1002/2014GL062191

10.5194/acp‐14‐7091‐2014

10.5194/acp‐15‐11967‐2015

He Y., 2012, Numerical simulation of a heavy precipitation in Qinhai‐Xizang plateau based on WRF model, Plateau Meteorology, 31, 1183

10.1029/2001JD900014

10.1016/j.accre.2016.10.002

10.1007/s00382‐012‐1473‐2

10.1007/s00382‐015‐2509‐1

10.1007/s00382‐010‐0982‐0

10.1175/JAMC‐D‐11‐084.1

10.1175/1520-0477(1996)077 < 0437:TNYRP > 2.0.CO;2

10.3189/172756500781832864

10.1088/1748‐9326/5/1/015101

10.5194/acp‐14‐8089‐2014

10.1029/2010GL046096

10.5194/acpd‐10‐21615‐2010

10.5194/acp‐11‐2837‐2011

10.1002/2015JD023298

10.5194/acp‐10‐7017‐2010

10.1007/s00382‐006‐0114‐z

10.1088/1748‐9326/5/2/025204

10.5194/tc‐2016‐32

10.1016/j.atmosenv.2015.12.059

10.1016/j.gloplacha.2008.02.001

10.1029/2011GL049903

10.5194/acp‐10‐4559‐2010

10.5194/acp‐8‐1343‐2008

10.1016/j.atmosres.2008.09.007

10.1002/joc.1181

10.1029/97JD00237

10.1029/2008JD009804

10.1029/2007GL029262

10.5194/acp‐11‐1929‐2011

10.1007/s00376‐014‐0010‐0

10.1175/JCLI3694.1

10.5194/acp‐14‐11117‐2014

10.1038/nature06019

10.1016/j.atmosres.2013.05.002

10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2

10.1002/hyp.1468

Skamarock W. C. Klemp J. B. Dudhia J. Gill D. O. Barker D. M. Wang W. &Powers J. D.(2005).A description of the advanced research WRF version 2(Tech Report TN‐468 + STR 8 pp.). Boulder CO: National Center for Atmospheric Research.

10.1016/j.atmosres.2014.08.008

10.1029/2008GL034330

10.1016/j.scitotenv.2016.08.184

10.1016/j.atmosenv.2014.12.007

10.5194/gmdd‐3‐2439‐2010

10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2

10.6038/cjg20130406

10.1073/pnas.0910444106

10.1088/1748‐9326/7/1/014022

10.2151/jmsj1965.70.1B_319

10.1155/2015/294589

10.1155/2016/7849249

10.1007/s00382‐016‐3240‐2

10.1007/s11434‐010‐4327‐5

10.1657/1523-0430(07-510)[YAO]2.0.CO;2

10.1038/nclimate1580

10.1029/2007JD008782

10.1029/1999JD900876

10.1002/2016JD026397

10.5194/acpd‐9‐4081‐2009

10.5194/acp‐15‐6205‐2015

10.5094/apr.2015.090

10.5194/acp‐14‐11475‐2014

10.5194/acpd‐10‐9753‐2010

10.1002/2016JD026032