Modeling the Calvin-Benson cycle
Tóm tắt
Modeling the Calvin-Benson cycle has a history in the field of theoretical biology. Anyone who intends to model this system will look at existing models to adapt, refine and improve them. With the goal to study the regulation of carbon metabolism, we investigated a broad range of relevant models for their suitability to provide the basis for further modeling efforts. Beyond a critical analysis of existing models, we furthermore investigated the question how adjacent metabolic pathways, for instance photorespiration, can be integrated in such models. Our analysis reveals serious problems with a range of models that are publicly available and widely used. The problems include the irreproducibility of the published results or significant differences between the equations in the published description of the model and model itself in the supplementary material. In addition to and based on the discussion of existing models, we furthermore analyzed approaches in PGA sink implementation and confirmed a weak relationship between the level of its regulation and efficiency of PGA export, in contrast to significant changes in the content of metabolic pool within the Calvin-Benson cycle. In our study we show that the existing models that have been investigated are not suitable for reuse without substantial modifications. We furthermore show that the minor adjacent pathways of the carbon metabolism, neglected in all kinetic models of Calvin-Benson cycle, cannot be substituted without consequences in the mass production dynamics. We further show that photorespiration or at least its first step (O2 fixation) has to be implemented in the model if this model is aimed for analyses out of the steady state.
Tài liệu tham khảo
Bassham JA, Krause GH: Free energy changes and metabolic regulation in steady state photosynthetic carbon reduction. Biochim Biophys Acta. 1969, 189: 207-221. 10.1016/0005-2728(69)90048-6.
Pettersson G, Ryde-Pettersson U: A mathematical model of the Calvin photosynthesis cycle. Eur J Biochem. 1988, 175: 661-672. 10.1111/j.1432-1033.1988.tb14242.x.
Zhu XG, de Sturler E, Long SP: Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol. 2007, 145: 513-526. 10.1104/pp.107.103713.
Boyle NR, Morgan JA: Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol. 2009, 3: 4-
Knoop H, Zilliges Y, Lockau W, Steuer R: The Metabolic Network of Synechocystis sp. PCC 6803: Systemic Properties of Autotrophic Growth. Plant Physiology. 2010, 154: 410-422. 10.1104/pp.110.157198.
Montagud A, Navarro E, de Cordoba PF, Urchueguía JF, Patil KR: Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Syst Biol. 2010, 4: 156-10.1186/1752-0509-4-156.
Fleming RMT, Thiele I, Provan G, Nasheuer HP: Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. JTB. 2010, 264: 683-692. 10.1016/j.jtbi.2010.02.044.
Tenazinha N, Vinga S: A Survey on Methods for Modeling and Analyzing Integrated Biological Networks. TCBB. 2011, 8: 943-958.
Laisk A, Eichelmann H, Oja V: C3 photosynthesis in silico. Photosynth Res. 2006, 90: 45-66.
Safranek D, Cerveny J, Klement M, Pospisilova J, Brim L, Lazar D, Nedbal L: E-photosynthesis: Web-based platform for modeling of complex photosynthetic processes. BioSystems. 2011, 103: 115-124. 10.1016/j.biosystems.2010.10.013.
Zhu X, Alba R, de Sturler E: A simple model of the Calvin cycle has only one physiologically feasible steady state under the same external conditions. Nonlinear Anal-Real. 2009, 3: 1490-1499.
Grimbs S, Arnold A, Koseska A, Kurths J, Selbig J, Nikoloski Z: Spatiotemporal dynamics of the Calvin cycle: Multistationarity and symmetry breaking instabilities. BioSystems. 2011, 103: 212-223. 10.1016/j.biosystems.2010.10.015.
Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U: COPASI - a COmplex PAthway SImulator. Bioinformatics. 2006, 22: 3067-74. 10.1093/bioinformatics/btl485.
Lazar D, Kana R, Klinkovsky T, Naus J: Experimental and theoretical study on high temperature induced changes in chlorophyll a fluorescence oscillations in barley leaves upon 2% CO2. Photosynthetica. 2005, 3: 13-27.
Hahn BD: A mathematical model of leaf carbon metabolism. Annals of Botany. 1984, 54: 325-339.
Hahn BD: A Mathematical Model of the Calvin Cycle: Analysis of the Steady State. Annals of Botany. 1986, 57: 639-653.
Hahn BD: A mathematical model of photorespiration and photosynthesis. Annals of Botany. 1987, 60: 157-169.
Woodrow IE: Control of the rate of photosynthetic carbon dioxide fixation. Biochim Biophy Acta. 1986, 851: 181-192. 10.1016/0005-2728(86)90124-6.
Laisk A, Eichelmann H, Oja V, Eatherall A, Walker DA: A mathematical model of the carbon metabolism in photosynthesis. Difficulties in explaining oscillations by fructose 2,6-bisphosphate regulation. Proc R Soc Lond B Biol Sci. 1989, 237: 389-415. 10.1098/rspb.1989.0057.
Woodrow IE, Mott KA: Modeling C3 photosynthesis--a sensitivity analysis of the photosynthetic carbon reduction cycle. Planta. 1993, 191: 421-432.
Poolman MG, Assmus HE, Fell DA: Applications of metabolic modelling to plant metabolism. J Exp Bot. 2004, 55: 1177-1186. 10.1093/jxb/erh090.
Poolman MG: Computer modeling applied to the Calvin cycle: PhD thesis. 1999, Oxford Brookes University
Kallas T, Castenholz RW: Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. During exposure to growth-inhibiting low pH. Journal of Bacterology. 1982, 149: 229-236.
Portis AR, Chon CJ, Mosbach A, Heldt HW: Fructose- and sedoheptulosebisphosphatase. The sites of a possible control of CO2 fixation by light-dependent changes of the stromal Mg 2+ concentration. Biochim Biophys Acta. 1977, 461: 313-325. 10.1016/0005-2728(77)90181-5.
Stitt M, Wirtz W, Heldt HW: Metabolite levels during induction in the chloroplast and extrachloroplast compartments of spinach protoplasts. Biochim Biophys Acta. 1980, 593: 85-102. 10.1016/0005-2728(80)90010-9.
Sprenger GA, Schorken U, Sprenger G, Sahm H: Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains. Eur J Biochem. 1995, 230: 525-532. 10.1111/j.1432-1033.1995.0525h.x.
Woodrow IE, Mott KA: Rate limitation of non-steady-state photosynthesis by ribulose-1,5-bisphosphate carboxylase in spinach. Aust J Plant Physiol. 1989, 16: 487-500. 10.1071/PP9890487.
Kana R, Kotabova E, Prasil O: Acceleration of plastoquinone pool reduction by alternative pathways precedes a decrease in photosynthetic CO2 assimilation in preheated barley leaves. Physiol Plant. 2008, 133: 794-806. 10.1111/j.1399-3054.2008.01094.x.
Albe KR: Partial purification and kinetic characterization of transaldolase from Dictyostelium discoideum. Exp Mycol. 1991, 15: 255-62. 10.1016/0147-5975(91)90027-B.
Badger MR, Lorimer G: Interaction of sugar phosphate with the catalytic site of RuBP-carboxylase. Biochemistry. 1981, 20: 2219-2225. 10.1021/bi00511a023.
Farquhar GD: Models describing the kinetics of ribulose biphosphate carboxylase-oxygenase. Arch Biochem Biophys. 1979, 193: 456-468. 10.1016/0003-9861(79)90052-3.
von Caemmerer S: Biochemical Models of Leaf Photosynthesis. 2000, Victoria, Australia, 1-28. Techniques in Plant Sciences Series. CSIRO Publishing