Modeling of laser-induced breakdown spectroscopic data analysis by an automatic classifier

International Journal of Data Science and Analytics - Tập 8 Số 2 - Trang 213-220 - 2019
Pokrajac, David D.1, Sivakumar, Poopalasingam2, Markushin, Yuriy1, Milovic, Daniela3, Holness, Gary1, Liu, Jinjie1, Melikechi, Noureddine4, Rana, Mukti1
1Delaware State University, Dover, USA
2Southern Illinois University–Carbondale, Carbondale, USA
3University of Nis, Niš, Serbia
4[University of Massachusetts Lowell, Lowell, USA]

Tóm tắt

Laser-induced breakdown spectroscopy (LIBS) is a multi-elemental and real-time analytical technique with simultaneous detection of all the elements in any type of sample matrix including solid, liquid, gas, and aerosol. LIBS produces vast amount of data which contains information on elemental composition of the material among others. Classification and discrimination of spectra produced during the LIBS process are crucial to analyze the elements for both qualitative and quantitative analysis. This work reports the design and modeling of optimal classifier for LIBS data classification and discrimination using the apparatus of statistical theory of detection. We analyzed the noise sources associated during the LIBS process and created a linear model of an echelle spectrograph system. We validated our model based on assumptions through statistical analysis of “dark signal” and laser-induced breakdown spectra from the database of National Institute of Science and Technology. The results obtained from our model suggested that the quadratic classifier provides optimal performance if the spectroscopy signal and noise can be considered Gaussian.

Tài liệu tham khảo

citation_title=Principles of Instrumental Analysis; citation_publication_date=2007; citation_id=CR1; citation_author=S Crouch; citation_author=DA Skoog; citation_publisher=Thomson Brooks/Cole Götz, M., Kononets, M., Bodenstein, C., Riedel, M., Book, M., Palsson, O.P.: Automatic water mixing event identification in the Koljö Fjord observatory data. Int J Data Sci Anal (2018). https://doi.org/10.1007/s4106 citation_journal_title=Int. J. Data Sci. Anal.; citation_title=Data science: the impact of statistics; citation_author=C Weihs, K Ickstadt; citation_volume=6; citation_publication_date=2018; citation_pages=189-194; citation_doi=10.1007/s41060-018-0102-5; citation_id=CR3 citation_journal_title=NMR Biomed.; citation_title=Near-optimal region selection for feature space reduction: novel preprocessing methods for classifying MR spectra; citation_author=AE Nikulin, B Dolenko, T Bezabeh, RL Somorjai; citation_volume=11; citation_publication_date=1998; citation_pages=209-216; citation_doi=10.1002/(SICI)1099-1492(199806/08)11:4/5<209::AID-NBM510>3.0.CO;2-5; citation_id=CR4 citation_journal_title=Vib. Spectrosc.; citation_title=Classification of human gliomas by infrared imaging spectroscopy and chemometric image processing; citation_author=C Beleites, G Steiner, MG Sowa, R Baumgartner, S Sobottka, G Schackert, R Salzer; citation_volume=38; citation_publication_date=2005; citation_pages=143-149; citation_doi=10.1016/j.vibspec.2005.02.020; citation_id=CR5 citation_journal_title=Appl. Spectrosc.; citation_title=Raman spectroscopy and genetic algorithms for the classification of wood types; citation_author=BK Lavine, CE Davidson, AJ Moores, PR Griffiths; citation_volume=55; citation_publication_date=2001; citation_pages=960-966; citation_doi=10.1366/0003702011953108; citation_id=CR6 citation_journal_title=Appl. Opt.; citation_title=Laser-induced breakdown spectroscopy for the classification of unknown powders; citation_author=EG Snyder, CA Munson, JL Gottfried, FC Lucia, Gullett B Jr, A Miziolek; citation_volume=47; citation_publication_date=2008; citation_pages=G80-G87; citation_doi=10.1364/AO.47.000G80; citation_id=CR7 Sunku, S., Rao, E.N., Kumar, G.M., Tewari, S.P., Rao, S.V.: Discrimination methodologies using femtosecond LIBS and correlation techniques. Proc. SPIE (2013). https://doi.org/10.1117/12.2015749 citation_journal_title=Trans. Mass-Data Anal. Images Signals; citation_title=Classification of LIBS protein spectra using multi-layer perceptrons; citation_author=T Vance, D Pokrajac, A Marcano, Y Markushin, S McDaniel, N Melikechi, A Lazarevic; citation_volume=2; citation_publication_date=2010; citation_pages=96-111; citation_id=CR9 Pokrajac, D., Vance, T., Lazarevic, A., Marcano, A., Markushin, Y., Melikechi, N., Reljin, N.: Performance of multilayer perceptrons for classification of LIBS protein spectra. In: Proceedings of 10th Symposium Neural Network Applications in Electrical Engineering (NEUREL), Belgrade, Serbia, pp. 171–174 (2010) Vance, T., Reljin, N., Lazarevic, A., Pokrajac, D. Kecman, V., Melikechi, N., Marcano, A., Markushin, Y., McDaniel, S.: Classification of LIBS protein spectra using support vector machines and adaptive local hyperplanes. In: Proceedings of 2010 IEEE world congress on computational intelligence, Barcelona, Spain, pp. 1–7 (2010) citation_journal_title=Vib. Spectrosc.; citation_title=The classification of Phyllanthus Niruri Linn. According to location by infrared spectroscopy; citation_author=S Dharmaraj, AS Jamaludin, HM Razak, R Valliappan, NA Ahman, GL Harn, Z Ismail; citation_volume=41; citation_publication_date=2006; citation_pages=68-72; citation_doi=10.1016/j.vibspec.2005.12.012; citation_id=CR12 Tripathi, M.: Echelle Spectrographs: A Flexible Tool for Spectroscopy: Raman and LIBS Spectroscopy. Andor Technology. http://www.andor.com/pdfs/echelle_spectrograph.pdf (2005). Accessed 06 July 2017 citation_title=Diffraction Grating Handbook; citation_publication_date=2005; citation_id=CR14; citation_author=C Palmer; citation_author=E Loewen; citation_publisher=Newport Corporation citation_title=Diffraction Gratings and Applications; citation_publication_date=1997; citation_id=CR15; citation_author=E Loewen; citation_author=E Popov; citation_publisher=Marcel Dekker Inc. citation_journal_title=SPIE Proc.; citation_title=Echelle efficiency and blaze characteristics; citation_author=M Bottema; citation_volume=240; citation_publication_date=1981; citation_pages=171-176; citation_doi=10.1117/12.965652; citation_id=CR16 citation_journal_title=IEEE Trans. Image Proc.; citation_title=CCD noise removal in digital images; citation_author=K Faraji, WJ MacLean; citation_volume=5; citation_publication_date=2006; citation_pages=2676-2685; citation_doi=10.1109/TIP.2006.877363; citation_id=CR17 CCD Image Sensor Noise Sources. Eastman Kodak Company application note MTD/PS-0233, Rochester. https://www.uni-muenster.de/imperia/md/content/ziv/multimedia/downloads/kodak___noise_sources.pdf (2001). Accessed 29 Jan 2019 citation_title=Digital Signal Processing: A Computer-Based Approach; citation_publication_date=2006; citation_id=CR19; citation_author=SK Mitra; citation_publisher=McGraw-Hill citation_journal_title=Proc. Phys. Soc.; citation_title=Fluctuations of photon beams: the distribution of photo-electrons; citation_author=L Mandel; citation_volume=74; citation_publication_date=1959; citation_pages=233-243; citation_doi=10.1088/0370-1328/74/3/301; citation_id=CR20 citation_title=Probability: An Introduction; citation_publication_date=1986; citation_id=CR21; citation_author=G Grimmett; citation_author=D Welsh; citation_publisher=Oxford Science Publications citation_title=Handbook of the Poisson Distribution; citation_publication_date=1967; citation_id=CR22; citation_author=FA Haight; citation_publisher=Wiley citation_title=Fundamental of Digital Image Processing; citation_publication_date=1989; citation_id=CR23; citation_author=KA Jain; citation_publisher=Prentice-Hall Tian, H.: Noise analysis in CMOS image sensors. Ph.D. dissertation, Stanford University, Stanford, CA (2000) citation_title=Digital Signal Processing; citation_publication_date=1996; citation_id=CR25; citation_author=JG Proakis; citation_author=DG Manolakis; citation_publisher=Prentice-Hall citation_journal_title=Proc. SPIE Solid State Sens. Arrays Dev. Appl. II; citation_title=Modeling and estimation of FPN components in CMOS image sensors; citation_author=A El Gamal, B Fowler, H Min, X Liu; citation_volume=3301; citation_publication_date=1998; citation_pages=168-177; citation_id=CR26 citation_title=Detection Estimation and Modulation Theory Part I; citation_publication_date=2013; citation_id=CR27; citation_author=HLV Trees; citation_author=KL Bell; citation_publisher=Wiley citation_title=An Introduction to Support Vector Machines and Other Kernel-based Learning Methods; citation_publication_date=2000; citation_id=CR28; citation_author=N Cristianini; citation_author=J Shawe-Taylor; citation_publisher=Cambridge University Press citation_title=Principal Component Analysis; citation_publication_date=2002; citation_id=CR29; citation_author=IT Jolliffe; citation_publisher=Springer citation_title=A: First Course in Multivariate Statistics; citation_publication_date=1997; citation_id=CR30; citation_author=B Flury; citation_publisher=Springer Andor $$^{TM}$$ Technology: Mechelle User’s Guide. Andor Technology, Belfast (2008) citation_title=Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications; citation_publication_date=2006; citation_id=CR32; citation_author=AW Miziolek; citation_author=V Palleschi; citation_author=I Schechater; citation_publisher=Cambridge University Press citation_journal_title=J. Am. Stat. Assoc.; citation_title=The Kolmogorov–Smirnov test for goodness of fit; citation_author=FJ Massey; citation_volume=46; citation_publication_date=1951; citation_pages=68-78; citation_doi=10.1080/01621459.1951.10500769; citation_id=CR33 citation_journal_title=J. Am. Stat. Assoc.; citation_title=On the Kolmogorov–Smirnov test for normality with mean and variance unknown; citation_author=HW Lilliefors; citation_volume=62; citation_publication_date=1967; citation_pages=399-402; citation_doi=10.1080/01621459.1967.10482916; citation_id=CR34 citation_title=The Oxford Dictionary of Statistical Terms; citation_publication_date=2006; citation_id=CR35; citation_author=Y Dodge; citation_publisher=Oxford University Press citation_title=Time Series Analysis: Forecasting and Control; citation_publication_date=1994; citation_id=CR36; citation_author=GEP Box; citation_author=GM Jenkins; citation_author=GC Reinsel; citation_publisher=Prentice Hall https://www-s.nist.gov/srmors/viewTableH.cfm?tableid=90N (2017). Accessed 06 June 2017 citation_journal_title=J. Stat. Model. Anal.; citation_title=Power comparisons of Shapiro–Walk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests; citation_author=M Razali, YN Wah; citation_volume=2; citation_publication_date=2011; citation_pages=21-33; citation_id=CR38 citation_journal_title=Appl. Spectrosc.; citation_title=Automatic classification of laser-induced breakdown spectroscopy (LIBS) data of protein biomarker solutions; citation_author=D Pokrajac, A Lazarevic, V Kecman, A Marcano, Y Markushin, T Vance, N Reljin, S McDaniel, N Melikechi; citation_volume=68; citation_publication_date=2014; citation_pages=1067-1075; citation_doi=10.1366/14-07488; citation_id=CR39 Pořízka, P., Klus, J., Mašek, J., Rajnoha, M., Prochazka, D., Modlitbová, P., Novotný, J., Burget, R., Novotný, K., Kaiser, J.: Multivariate classification of echellograms: a new perspective in laser-induced breakdown spectroscopy analysis. Sci. Rep. 7, 3160 (2017). https://doi.org/10.1038/s41598-017-03426-0 Ali, A., Khan, M.Z., Rehan, I., Rehan, K., Muhammad, R.: Quantitative classification of quartz by laser induced breakdown spectroscopy in conjunction with discriminant function analysis. J. Spectrosc. 2016, 1835027 (2016). https://doi.org/10.1155/2016/1835027 citation_journal_title=Chemom. Intell. Lab. Syst.; citation_title=Classification of steel samples by laser-induced breakdown spectroscopy and random forest; citation_author=T Zhang, D Xia, H Tang, X Yang, Y Li; citation_volume=157; citation_publication_date=2016; citation_pages=196-201; citation_doi=10.1016/j.chemolab.2016.07.001; citation_id=CR42 citation_journal_title=Anal. Lett.; citation_title=Classification of Chinese herbal medicine by laser-induced breakdown spectroscopy with principal component analysis and artificial neural network; citation_author=J Wang, X Liao, P Zheng, S Xue, R Peng; citation_volume=51; citation_publication_date=2018; citation_pages=575-586; citation_doi=10.1080/00032719.2017.1340949; citation_id=CR43 citation_journal_title=Appl. Spectrosc.; citation_title=Laser-induced breakdown spectroscopy detection and classification of biological aerosols; citation_author=JD Hybl, GA Lithgow, SG Buckley; citation_volume=57; citation_publication_date=2003; citation_pages=1207-1215; citation_doi=10.1366/000370203769699054; citation_id=CR44 citation_journal_title=Appl. Opt.; citation_title=Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars; citation_author=NL Lanza, RC Wiens, SM Clegg, AM Ollila, SD Humphries, HE Newsom, JE Barefield; citation_volume=49; citation_publication_date=2010; citation_pages=C211-C217; citation_doi=10.1364/AO.49.00C211; citation_id=CR45 citation_journal_title=Stat. Surv.; citation_title=A survey of cross-validation procedures for model selection; citation_author=S Arlot, A Celisse; citation_volume=4; citation_publication_date=2010; citation_pages=40-79; citation_doi=10.1214/09-SS054; citation_id=CR46 citation_title=Feature Selection for Knowledge Discovery and Data Mining; citation_publication_date=1998; citation_id=CR47; citation_author=H Liu; citation_author=H Motoda; citation_publisher=Kluwer Bamgbade, A., Somorjai, R., Dolenko, B., Pranckeviciene, E., Nikulin, A., Baumgartner, R.: Evidence accumulation to identify discriminatory signatures in biomedical spectra. In: Proceedings of 10th conference on artificial intelligence in medicine, 23–27, pp. 463–467 (2005) citation_journal_title=J. Appl. Prob.; citation_title=Two dependent Poisson processes whose sum is still a Poisson process; citation_author=J Jacod; citation_volume=12; citation_publication_date=1975; citation_pages=170-172; citation_doi=10.2307/3212423; citation_id=CR49 citation_journal_title=Proc. ICASSP-91; citation_title=Optimal detection of non-Gaussian random signals in Gaussian noise; citation_author=D Kletter, PM Schultheiss, H Messer; citation_volume=2; citation_publication_date=1991; citation_pages=1305-1308; citation_id=CR50 Nuttall, A.H.: Optimum detection of random signal in non-Gaussian noise for low input signal to noise ratio. Naval Undersea Warfare Center Division. http://www.dtic.mil/dtic/tr/fulltext/u2/a422595.pdf (2017). Accessed 6 July 2017 citation_title=Non-Gaussian Statistical Communication Theory; citation_publication_date=2012; citation_id=CR52; citation_author=D Middleton; citation_publisher=Wiley