Mô hình hóa phân bố trường điện trong các mô trong quá trình thẩm điện

Selma Čorović1, Igor Lacković2, Primož Šuštarič3, Tomaž Šuštar3, Tomaž Rodič3, Damijan Miklavčič1
1Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, SI, 1000, Ljubljana, Slovenia
2Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR, 10000, Zagreb, Croatia
3C3M, d. o. o., Centre for Computational Continuum Mechanics, Technological Park 21, SI, 1000, Ljubljana, Slovenia

Tóm tắt

Tóm tắt Bối cảnh

Các liệu pháp và điều trị dựa trên thẩm điện (ví dụ: hóa trị điện, chuyển giao gen qua điện cho liệu pháp gen và tiêm vắc xin DNA, tiêu hủy mô bằng thẩm điện không thể đảo ngược và truyền thuốc qua da) yêu cầu dự đoán chính xác kết quả điều trị thông qua quy trình lập kế hoạch điều trị cá nhân hóa. Mô hình số hóa phân bố trường điện cục bộ trong các mô được thẩm điện đã trở thành một công cụ quan trọng trong quy trình lập kế hoạch điều trị cả trong lâm sàng và thí nghiệm. Các nghiên cứu gần đây đã báo cáo rằng những bất định trong tính chất điện (tức là độ dẫn điện của các mô được điều trị và tốc độ tăng độ dẫn điện do thẩm điện) được xác định trong các mô hình số có ảnh hưởng lớn đến hiệu quả điều trị dựa trên thẩm điện. Mục tiêu của nghiên cứu của chúng tôi là điều tra xem việc tăng độ dẫn điện của các mô có cần được xem xét khi mô hình hóa phản ứng mô đối với xung thẩm điện và nó ảnh hưởng như thế nào đến phân bố điện cục bộ trong các mô bị thẩm điện.

Từ khóa

#Tính dẫn điện #Thẩm điện #Lập mô hình số #Phân bố trường điện #Điều trị cá nhân hóa

Tài liệu tham khảo

Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH: Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982, 1: 841–845.

Pavlin M, Kanduser M, Rebersek M, Pucihar G, Hart FX, Magjarevic R, Miklavcic D: Effect of cell electroporation on the conductivity of a cell suspension. Biophys J 2005, 88: 4378–4390. 10.1529/biophysj.104.048975

Kotnik T, Pucihar G, Miklavcic D: Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J Membrane Biol 2010, 236: 3–13. 10.1007/s00232-010-9279-9

Pucihar G, Krmelj J, Rebersek M, Napotnik TB, Miklavcic D: Equivalent Pulse Parameters for Electroporation. IEEE T Biomed Eng 2011, 58: 3279–3288.

Teissié J, Rols MP: An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 1993, 65(1):409–413. 10.1016/S0006-3495(93)81052-X

Cemazar M, Jarm T, Miklavcic D, Macek Lebar A, Ihan A, Kopitar NA, Sersa G: Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electro Magnetobiol 1998, 17: 263–272.

Valic B, Golzio M, Pavlin M, Schatz A, Faurie C, Gabriel B, Teissie J, Rols MP, Miklavcic D: Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiments. Eur Biophys J 2003, 32: 519–528. 10.1007/s00249-003-0296-9

Pucihar G, Kotnik T, Valic B, Miklavcic D: Numerical determination of transmembrane voltage induced on irregularly shaped cells. Annals Biomed Eng 2006, 34: 642–652. 10.1007/s10439-005-9076-2

Corovic S, Zupanic A, Kranjc S, Al Sakere B, Leroy-Willig A, Mir LM, Miklavcic D: The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Med Biol Eng Comput 2010, 48: 637–648. 10.1007/s11517-010-0614-1

Prud’homme GJ, Glinka Y, Khan AS, Draghia-Akli R: Electroporation enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Curr Gene Ther 2006, 6: 243–273. 10.2174/156652306776359504

Miklavcic D, Beravs K, Semrov D, Cemazar M, Demsar F, Sersa G: The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys J 1998, 74: 2152–2158. 10.1016/S0006-3495(98)77924-X

Kotnik T, Bobanovic F, Miklavcic D: Sensitivity of transmembrane voltage induced by applied electric fields – a theoretical analysis. Bioelectrochem Bioenerg 1997, 43: 285–291. 10.1016/S0302-4598(97)00023-8

Miklavcic D, Corovic S, Pucihar G, Pavselj N: Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. Eur J Cancer 2006, 4(Suppl):45–51.

Rols MP, Teissié J: Electropermeabilization of mammalian cells, Quantitative analysis of the phenomenon. Biophys J 1990, 58(5):1089–1098. 10.1016/S0006-3495(90)82451-6

Miklavcic D, Semrov D, Mekid H, Mir LM: A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta 2000, 1523: 73–83. 10.1016/S0304-4165(00)00101-X

Corovic S, Mir LM, Miklavcic D: In vivo muscle electroporation threshold determination: realistic numerical models and in vivo experiments. J Membrane Biol 2012, 245: 509–520. 10.1007/s00232-012-9432-8

Davalos RV, Mir LM, Rubinsky B: Tissue ablation with irreversible electroporation. Ann Biomed Eng 2005, 33: 223. 10.1007/s10439-005-8981-8

Rubinsky J, Onik G, Mikus P, Rubinsky B: Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J Urol 2008, 180: 2668–2674. 10.1016/j.juro.2008.08.003

Al-Sakere B, Andre F, Bernat C, Connault E, Opolon P, Davalos RV, Rubinsky B, Mir LM: Tumor ablation with irreversible electroporation. PlosOne 2007, 2: 1135.

Vorobiev E, Lebovka N: Electrotechnologies for Extraction from Food Plants and Biomaterials. New York: Springer Science; 2008.

Sack M, Sigler J, Frenzel S, Chr E, Arnold J, Michelberger T, Frey W, Attmann F, Stukenbrock L, Mueller G: Research on Industrial-Scale Electroporation Devices Fostering the Extraction of Substances from Biological Tissue. Food Eng Rev 2010, 2: 147–156. 10.1007/s12393-010-9017-1

Cemazar M, Tamzali Y, Sersa G, Tozon N, Mir LM, Miklavcic D, Lowe R, Teissie J: Electrochemotherapy in veterinary oncology. J Vet Intern Med 2008, 22(4):826–831. 10.1111/j.1939-1676.2008.0117.x

Testori A, Tosti G, Martinoli C, Spadola G, Cataldo F, Verrecchia F, Baldini F, Mosconi M, Soteldo J, Tedeschi I, Passoni C, Pari C, Di Pietro A, Ferrucci PF: Electrochemotherapy for cutaneous and subcutaneous tumor lesions: a novel therapeutic approach. Dermatol Ther 2010, 23(6):651–661. 10.1111/j.1529-8019.2010.01370.x

Cemazar M, Jarm T, Sersa G: Cancer electrogene therapy with interleukin-12. Curr Gene Ther 2010, 10(4):300–311. 10.2174/156652310791823425

Heller LC, Heller R: Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther 2010, 10(4):312–317. 10.2174/156652310791823489

Neal RE II, Rossmeisl JH Jr, Garcia PA, Lantz O, Henao-Guerrero N, Davalos RV: Successful treatment of a large soft-tissue sarcoma with irreversible electroporation. J Clin Oncol 2011, 29(13):372–377. 10.1200/JCO.2010.33.0902

Sersa G, Cufer T, Paulin Kosir S, Cemazar M, Snoj M: Electrochemotherapy of chest wall breast cancer recurrence. Cancer Treat Rev 2012, 38(5):379–386. 10.1016/j.ctrv.2011.07.006

Morales-de La Peña M, Elez-Martínez P, Martín-Belloso O: Food preservation by pulsed electric fields: an engineering perspective. Food Eng Rev 2011, 3: 94–107. 10.1007/s12393-011-9035-7

Rieder A, Schwartz T, Schön-Hölz K, Marten SM, Süß J, Gusbeth C, Kohnen W, Swoboda W, Obst U, Frey W: Molecular monitoring of inactivation efficiencies of bacteria during pulsed electric field (PEF) treatment of clinical wastewater. J Appl Microbiol 2008, 105: 2035–2045. 10.1111/j.1365-2672.2008.03972.x

Campana LG, Valpione S, Mocellin S, Sundararajan R, Granziera E, Sartore L, Chiarion-Sileni V, Rossi CR: Electrochemotherapy for disseminated superficial metastases from malignant melanoma. BJS 2012, 99: 821–830. 10.1002/bjs.8749

Pech M, Janitzky A, Wendler JJ, Strang C, Blaschke S, Dudeck O, Ricke J, Liehr UB: Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc Intervent Radiol 2011, 34(1):132–138. 10.1007/s00270-010-9964-1

Onik G, Rubinsky B: Irreversible electroporation: First patient experience—Focal therapy of prostate cancer. In Irreversible Electroporation. Edited by: Rubinsky B. Heidelberg, Germany: Springer Berlin; 2010:235–247.

Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R: Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008, 26: 896–903.

Ahmad S, Casey G, Sweeney P, Tangney M, O'Sullivan GC: Optimized electroporation mediated DNA vaccination for treatment of prostate cancer. Genet Vaccines Ther 2010, 8: 1. 10.1186/1479-0556-8-1

Mir LM: Bases and rationale of the electrochemotherapy. EJC 2006, 4(Suppl):38–44.

Campana LG, Mocellin S, Basso M, Puccetti O, De Salvo GL, Chiarion-Sileni V, Vecchiato A, Corti L, Rossi CR, Nitti D: Bleomycin-based electrochemotherapy: clinical outcome from a single institution's experience with 52 patients. Ann Surg Oncol 2009, 16(1):191–199. 10.1245/s10434-008-0204-8

Matthiessen LW, Chalmers RL, Sainsbury DC, Veeramani S, Kessell G, Humphreys AC, Bond JE, Muir T, Gehl J: Management of cutaneous metastases using electrochemotherapy. Acta Oncol 2011, 50(5):621–629. 10.3109/0284186X.2011.573626

Gargiulo M, Papa A, Capasso P, Moio M, Cubicciotti E, Parascandolo S: Electrochemotherapy for non-melanoma head and neck cancers: clinical outcomes in 25 patients. Ann Surg 2012, 255(6):1158–1164. 10.1097/SLA.0b013e31824f68b2

Miklavcic D, Snoj M, Zupanic A, Kos B, Cemazar M, Kropivnik M, Bracko M, Pecnik T, Gadzijev E, Sersa G: Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. Biomed Eng Online 2010, 9: 10. 10.1186/1475-925X-9-10

Edhemovic I, Gadzijev EM, Brecelj E, Miklavcic D, Kos B, Zupanic A, Mali B, Jarm T, Pavliha D, Marcan M, Gasljevic G, Gorjup V, Music M, Pecnik Vavpotic T, Cemazar M, Snoj M, Sersa G: Electrochemotherapy: A new technological approach in treatment of metastases in the liver. Technol Cancer Res Treat 2011, 10: 475–485.

Corovic S, Al-Sakere B, Haddad V, Miklavcic D, Mir LM: Importance of contact surface between electrodes and treated tissue in electrochemotherapy. Technol Cancer Res Treat 2008, 7: 393–400.

Ivorra A, Al-Sakere B, Rubinsky B, Mir LM: Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies. Phys Med Biol 2008, 53: 6605–6618. 10.1088/0031-9155/53/22/020

Kos B, Zupanic A, Kotnik T, Snoj M, Sersa G, Miklavcic D: Robustness of treatment planning for electrochemotherapy of deep-seated tumors. J Membrane Biol 2010, 236: 147–153. 10.1007/s00232-010-9274-1

Pavliha D, Kos B, Zupanic A, Marcan M, Sersa G, Miklavcic D: Patient-specific treatment planning of electrochemotherapy: Procedure design and possible pitfalls. Bioelectrochemistry 2012, 87: 265–273.

Fini M, Tschon M, Alberghini M, Bianchi G, Mercuri M, Campanacci L, Cavani F, Ronchetti M, De Terlizzi F, Cadossi R: Cell electroporation in bone tissue. In Clinical aspects of electroporation. Edited by: Kee ST, Gehl J, Lee EW. New York: Springer; 2011:115–127.

Agerholm-Larsen B, Iversen HK, Ibsen P, Moller JM, Mahmood F, Jensen KS, Gehl J: Preclinical validation of electrochemotherapy as an effective treatment for brain tumors. Cancer Res 2011, 71(11):3753–3762. 10.1158/0008-5472.CAN-11-0451

Garcia PA, Pancotto T, Rossmeisl JH, Henao-Guerrero N, Gustafson NR, Daniel GB, Robertson JL, Ellis TL, Davalos RV: Non-Thermal Irreversible Electroporation (N-TIRE) and Adjuvant Fractionated Radiotherapeutic Multimodal Therapy for Intracranial Malignant Glioma in a Canine Patient. Technol Cancer Res Treat 2011, 10: 73–83.

Corovic S, Zupanic A, Miklavcic D: Numerical modeling and optimization of electric field distribution in subcutaneous tumor treated with electrochemotherapy using needle electrodes. IEEE T Plasma Sci 2008, 36: 1665–1672.

Zupanic A, Corovic S, Miklavcic D: Optimization of electrode position and electric pulse amplitude in electrochemotherapy. Radiol Oncol 2008, 42: 93–101.

Zupanic A, Corovic S, Miklavcic D, Pavlin M: Numerical optimization of gene electrotransfer into muscle tissue. Biomed Eng Online 2010, 9: 66. 10.1186/1475-925X-9-66

Zupanic A, Miklavcic D: Optimization and numerical modeling in irreversible electroporation treatment planning. In Irreversible Electroporation. Edited by: Rubinsky B. Heidelberg: Springer; 2010:203–222.

Neal RE II, Garcia PA, Robertson JL, Davalos RV: Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE T Biomed Eng 2012, 59(4):1077–1085.

Garcia PA, Rossmeisl JH, Neal RE, Ellis TL, Olson JD, Henao-Guerrero N, Robertson J, Davalos RV: Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis. J Membr Biol 2010, 236: 127–136. 10.1007/s00232-010-9284-z

Mahmood F, Gehl J: Optimizing clinical performance and geometrical robustness of a new electrode device for intracranial tumor electroporation. Bioelectrochemistry 2011, 81: 10–16. 10.1016/j.bioelechem.2010.12.002

Zupanic A, Kos B, Miklavcic D: Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 2012, 57: 5425–5440. 10.1088/0031-9155/57/17/5425

Cukjati D, Batiuskaite D, André F, Miklavčič D, Mir LM: Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry 2007, 70: 501–507. 10.1016/j.bioelechem.2006.11.001

Essone Mezeme M, Pucihar G, Pavlin M, Brosseau C, Miklavcic D: A numerical analysis of multicellular environment for modeling tissue electroporation. Appl Phys Lett 2012, 100: 143701. 10.1063/1.3700727

Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir LM, Miklavcic D: Sequential finite element model of tissue electropermeabilization. IEEE Trans Biomed Eng 2005, 52: 816–27. 10.1109/TBME.2005.845212

Pavselj N, Bregar Z, Cukjati D, Batiuskaite D, Mir LM, Miklavcic D: The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans Biomed Eng 2005, 52: 1373. 10.1109/TBME.2005.851524

Gresovnik I: A General Purpose Computational Shell for Solving Inverse and Optimisation Problems - Applications to Metal Forming Processes. PhD Thesis: University of Wales Swansea, UK; 2000.

Center for Computational Continuum Mechanics (Ljubljana, Slovenia). [http://www.c3m.si]

Lackovic I, Magjarevic R, Miklavcic D: Incorporating Electroporation-related conductivity changes into models for the calculation of the electric field distribution in tissue. In Proceedings of IFMBE (XII Mediterranean Conference on Medical and Biological Engineering and Computing). Edited by: Magjarevic R, Bamidis Panagiotis D, Pallikarakis N. Berlin Heidelberg: Springer; 2010:695–698.

Giavazzi S, Ganatea MF, Trkov M, Sustarsic P, Rodic T: Inverse determination of viscoelastic properties of human fingertip skin. Materials and Geoenvironment 2010, 57: 1–16.

Korelc J: AceGEN (Multi-language, Multi-environment Numerical Code Generation) – Users manual. 2009. [http://www.fgg.uni-lj.si/symech/]

Korelc J: AceFEM ((The Mathematica Finite Element Environment) – Users manual. 2009. [http://www.fgg.uni-lj.si/symech/]

Korelc J: Automation of primal and sensitivity analysis of transient coupled problems. Comput Mech 2009, 44: 631–649. 10.1007/s00466-009-0395-2

Haemmerich D, Staelin ST, Stai JZ, Tungjitkusolmun S, Mahvi DM, Webster JG: In vivo electrical conductivity of hepatic tumours. Physiol Meas 2003, 24: 251–260. 10.1088/0967-3334/24/2/302

Gabriel C, Peyman A, Grant EH: Electrical conductivity of tissue at frequencies below 1 MHz. Phys Med Biol 2009, 54: 4863–4878. 10.1088/0031-9155/54/16/002

Pavselj N, Miklavcic D: A numerical model of permeabilized skin with local transport regions. IEEE T Biomed Eng 2008, 55: 1927–1930.

Corovic S, Pavlin M, Miklavcic D: Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomed Eng Online 2007, 6: 37. 10.1186/1475-925X-6-37