Modeling gas flow through microchannels and nanopores

Journal of Applied Physics - Tập 93 Số 8 - Trang 4870-4879 - 2003
Subrata Roy1, Reni Raju1, Helen F. Chuang2, Brett A. Cruden2, M. Meyyappan2
1Computational Plasma Dynamics Laboratory, Department of Mechanical Engineering Kettering University, Flint, Michigan 48504
2Center for Nanotechnology, NASA Ames Research Center, Moffett Field, California 94035

Tóm tắt

Microchannel based systems have emerged as a critical design trend in development of precise control and maneuvering of small devices. In microelectronics, space propulsion and biomedical areas, these systems are especially useful. Nanoscale pores are recently becoming of great interest due to their beneficial drag and heat transfer properties. However it is difficult to predict the flow performance of these microsystems and nanosystems numerically since the standard assumptions of using Navier–Stokes equations break down at micrometer scales, while the computational times of applicable molecular-dynamics codes become exorbitant. A two-dimensional finite-element based microscale flow model is developed to efficiently predict the overall flow characteristics up to the transition regime for reasonably high Knudsen number flow inside microchannels and nanopores. Presented two-dimensional numerical results for Poiseuille flow of a simple fluid through the microchannel are comparable to the numerical and experimental data published in the literature. The nanopore solutions are also validated with presented experimental data.

Từ khóa


Tài liệu tham khảo

1999, J. Fluids Eng., 121, 5, 10.1115/1.2822013

2000, Prob. Eng. Math., 15, 213

2000, J. Micromech. Microeng., 10, 372, 10.1088/0960-1317/10/3/311

1957, J. Chem. Phys., 27, 1208, 10.1063/1.1743957

1995, Annu. Rev. Fluid Mech., 27, 257, 10.1146/annurev.fl.27.010195.001353

2001, J. Phys. Chem., 105, 6916, 10.1021/jp0103272

2000, J. Phys. Chem., 104, 4618

1989, Annu. Rev. Fluid Mech., 21, 387, 10.1146/annurev.fl.21.010189.002131

1998, Annu. Rev. Fluid Mech., 30, 403, 10.1146/annurev.fluid.30.1.403

1987, AGARD Conf. Proc., 11, 1

2001, Phys. Fluids, 13, 3061, 10.1063/1.1397256

1935, Proc. London Math. Soc., 40, 382

2001, J. Chem. Phys., 115, 3878, 10.1063/1.1387976

2000, J. Chem. Phys., 112, 1984, 10.1063/1.480758

1994, Appl. Microfabrication Fluid Mech. FED, 197, 51

1998, Numer. Heat Transfer, Part A, 33, 749, 10.1080/10407789808913964

1995, J. Fluid Mech., 284, 257, 10.1017/S0022112095000358

1999, J. Chem. Phys., 110, 9235, 10.1063/1.478847

1997, J. Chem. Phys., 107, 4384, 10.1063/1.474779

1999, Chem. Eng. J., 74, 25, 10.1016/S1385-8947(99)00050-9

2000, Ind. Eng. Chem. Res., 39, 3737, 10.1021/ie000301h

1879, Philos. Trans. R. Soc. London, 170, 231, 10.1098/rstl.1879.0067

1898, Ann. der Phys. Chem., 64, 101

1998, Numer. Heat Transfer, Part B, 33, 5, 10.1080/10407799808915021

2002, J. Plasma Phys., 68, 305, 10.1017/S0022377802002027

2002, Phys. Plasmas, 9, 4052, 10.1063/1.1498261

1994, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math., 54, 409, 10.1137/S0036139992240425

1998, J. Appl. Phys., 84, 6023, 10.1063/1.368911

1997, Appl. Phys. Lett., 71, 2770, 10.1063/1.120128

1994, J. Membr. Sci., 91, 65, 10.1016/0376-7388(94)00019-0

1984, J. Chem. Eng. Jpn., 17, 514, 10.1252/jcej.17.514