Modeling and simulating the nucleation of amorphous or crystalline films of diamond-like materials
Tóm tắt
The paper is concerned with the modeling and simulation of film nucleation and growth in the case of diamond-like deposition of materials on a (100) surface. Semi-empirical methods of computational quantum chemistry are used to estimate the potential energies of carbon clusters, on whose basis possible mechanisms of monolayer growth are investigated and the influence of temperature and pressure on a film microstructure is assessed.
Tài liệu tham khảo
Yuan, C., Steckl, A.J., and Loboda, M.J., Effect of Carbonization on the Growth of 3C-SiC on Si (111) by Silacyclobutane, Appl. Phys. Lett., 1994, vol. 64, pp. 3000–3002.
Tranchant, N., Tromson, D., Remes, Z., Rocha, L., Nesladec, M., and Bergonozo, P., Single Crystal CVD Diamond Growth and Characterizations, Mater. Res. Soc., 2007, vol. 956, pp. 177–182.
Kopidakis, G., Remediakis, I.N., Fyta, M.G., and Kelires, P.C., Atomic and Electronic Structure of Crystalline-Amorphous Carbon Interfaces, Diamond Relat. Mater., 2007, vol. 16, pp. 1875–1881.
Li, X., Collazo, R., and Sitar, Z., Highly Oriented Diamond Films Grown at High Growth Rate, Mater. Res. Soc., 2007, vol. 956, pp. 171–176.
Wagner, G., Schwarzkopf, J., Schmidbauer, M., and Formari, R., Influence of Growth Parameters on the Residual Strain in 3C-SiC Epitaxial Layers on (001) Silicon, Mater. Sci. Forum, 2009, vol. 600-03(1), pp. 223–226.
Nagasawa, H., Yagi, K., and Kawahara, T., Optical and Electrical Characterization of Free Standing 3C-SiC Films Grown on Undulant 6-Inch Si Substrates, Proc. 13th Int. Conf. on Crystal Growth, 2001, pp. 103–107.
Polychroniadis, E., Andreadou, A., and Mantzari, A., Some Recent Progress in 3C-SiC Growth: A TEM Characterization, J. Optoelectron. Adv. Mater., 2004, vol. 6, no. 1, pp. 47–52.
Solov’ev, M.E. and Solov’ev, M.M., Komp’yuternaya khimiya (Computer Chemistry), Moscow: Solon-press, 2005.
Hara, S., Slijkerman, W.F., and Van-der-Veen, J.F., Elemental Composition of β-SiC(001) Surface Phases Studied by Medium Energy Ion Scattering, Surf. Sci. Lett., 1990, vol. 231, pp. 196–200.
Bermudez, V. and Kaplan, R., Preparation and Characterization of Carbon-Terminated β-SiC(001) Surfaces, Phys. Rev., 1991, vol. 44, no. 20, pp. 11149–11158.
Dayan, M., The β-SiC(001) Surface Studied by Low Energy Electron Diffraction, Auger Electron Spectroscopy, and Electron Energy Loss Spectra, J. Vac. Sci. Technol., 1986, vol. 4, no. 1, pp. 38–45.
Bellina, J., Ferrante, J., and Zeller, M., Surface Modification Strategies for (100)3C-SiC, J. Vac. Sci. Technol., 1986, vol. 4, no. 3, pp. 1992–1995.
Kaplan, R. and Parrill, T.M., Reduction of SiC Surface Oxides by a Ga Molecular Beam: LEED and Electron Spectroscopy Studies, Surf. Sci., 1986, vol. 165, pp. 45–52.
Powers, J.M., Wander, A., Van Hove, M.A., and Somorjai, G.A., Structural Analysis of the β-SiC(100)-(2 × 1) Surface Reconstruction by Automated Tensor LEED, Surf. Sci., 1992, vol. 260, pp. 7–10.
Yeom, H.W., Shimomura, M., Kitamura, J., Hara, S., Tono, K., Matsuda, I., Mun, B.S., Huff, W.A., Kono, S., Ohta, T., Yoshida, S., Okushi, H., Kajimura, K., and Fadley, C.S., Atomic and Electronic-Band Structures of Anomalous Carbon Dimers on 3C-SiC(001)-c(2 × 2), Phys. Rev. Lett., 1999, vol. 83, no. 8, pp. 1640–1643.
Badziag, P., Energetics in the c(2 × 2) Reconstruction of the β-SiC(100) Surface, Phys. Rev. B, 1991, vol. 44, no. 20, pp. 11143–11148.
Yan, H., Hu, X., and Jonsson, H., Atomic Structure of β-SiC(100) Surfaces: A Study Using the Tersoff Potential, Surf. Sci., 1994, vol. 316, pp. 181–188.
Craig, B.I. and Smith, P.V., The Structures of Small Hydrocarbons Adsorbed on Si(001) and Si Terminated β-SiC(001), Surf. Sci., 1993, vol. 285, p. 295.
Badziag, P., Formation of the β-SiC c(2 × 2) Reconstructed Surface, Surf. Sci., 1992, vol. 269, pp. 1152–1156.
Halicioglu, T., Multilayer Relaxation Features on (100) and (111) Surfaces of β-SiC, Thin Solid Films, 1996, vol. 286, pp. 184–187.
Dyson, A.J. and Smith, P.V., Empirical Potential Study of the Chemisorption of C2H2 and CH3 on the β-SiC(001) Surface, Surf. Sci., 1998, vol. 396, pp. 24–39.
Craig, B.I. and Smith, P.V., The Structure of the C(2 × 2) Phase of the Carbon Terminated β-SiC(100) Surface, Surf. Sci. Lett., 1991, vol. 256, pp. 609–612.
Pollmann, J., Lu, W., and Kruger, P., Ab Initio Calculation on Clean and Oxygen Covered 6H-SiC(0001) Surfaces: \(\left( {\sqrt 3 \times \sqrt 3 } \right) - R30^ \circ\) Reconstruction, Mater. Sci. Forum, 2000, vol. 369, pp. 338–342.
Pollmann, J., Kruger, P., Rohlfing, M., Sabisch, M., and Vogel, D., Ab Initio Calculations of Structural and Electronic Properties of Prototype Surfaces of Group IV, III–V and II–VI Semiconductors, Appl. Surf. Sci., 1996, vol. 104, pp. 1–16.
Scholze, A., Schmidt, W.G., Käckell, P., and Bechstedt, F., Diamond (111) and (100) Surface: ab initio Study of the Atomic and Electronic Structure, Mater. Sci. Eng., 1996, vol. 37, pp. 158–161.
Käckell, P., Furthmüller, J., Bechstedt, F., Kresse, G., and Hafner, J., Characterization of Carbon-Carbon Bonds on the SiC(001)c(2 × 2) Surface, Phys. Rev., 1996, vol. 54, no. 15, pp. 10304–10307.
Furthmüller, J., Hafner, J., and Kresse, G., Dimer Reconstruction and Electronic Surface States on Clean and Hydrogenated Diamond (100) Surfaces, Phys. Rev., 1996, vol. 53, no. 11, pp. 7334–7351.
Catellani, A., Galli, G., and Rigolli, P.L., Carbon Lines on the Cubic SiC(001) Surface, Phys. Rev., 2000, vol. 62, no. 8, pp. 4794–4797.
Bykov, V.I., Modelirovanie kriticheskikh yavlenii v khimicheskoi kinetike (Modeling Critical Phenomena in Chemical Kinetics), Moscow: KomKniga, 2007.
Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Adsorption Technology Fundamentals), Moscow: Khimiya, 1984.
Sinel’nikov, B.M., Lutts, E., Tarala, V.A., Shirmer, K., and Prokhoda, T.N., Radio-Frequency Plasma Deposition and Characterization of a-C:H Films, Vestn. SevKavGTU, 2007, no. 1, pp. 5–12.