Modeling Local Scaling Properties for Multiscale Mapping

Vadose Zone Journal - Tập 7 Số 2 - Trang 525-532 - 2008
Qiuming Cheng1,2
1Dep. of Earth and Space Science and Engineering and Dep. of Geography, York Univ., 4700 Keele St., Toronto, ON, M3J 1P3 Canada
2State Key Laboratory of Geological Processes and Mineral Resources, China Univ. of Geosciences, Wuhan 430074, Beijing, 100083 China

Tóm tắt

Mapping surface soil properties and estimating soil parameters with multiresolution data has been significantly advanced by newly developed multiscale mapping technologies, which incorporate the concept and models of scaling analysis in data processing. This study was conducted to develop a new multiscale mapping technique on the basis of a power‐law model characterizing local singularity of exploratory data for mapping surface soil properties. A field with singularity due to self‐organization or self‐similarity properties of the underlying processes can be modeled by multifractal models. These types of data may not have the statistical stationary property required by ordinary geostatistical mapping techniques. The new mapping technique utilizes a scaling property for data interpolation and for downscaling image processing. The inputs, either point data or an image, can be separated into a nonsingular background component for estimation purposes and an anomalous component of singularity for multiscale high‐pass filtering purposes. When used for the purpose of data interpolation, this new method assigns weights for data interpolation by taking into account not only the distance between neighborhood points but also local structures and singularity of the field. The results of application of the method to a data set of geochemical concentration values of Ag from 1172 lake sediments in the Gowganda area of Ontario, Canada, have delineated favorable target areas with strong singularity of Ag concentrations caused by mineralization in lake sediments.

Từ khóa


Tài liệu tham khảo

10.1080/00206819509465388

Agterberg F.P., 2005, GIS and spatial analysis, Proc, 291

Andrews A.J., 1986, The silver deposits at Cobalt and Gowganda, Ontario: I. Geology, petrology, and whole‐rock geochemistry, Can. J. Earth Sci., 23, 1480, 10.1139/e86-143

Arneodo A., 1992, Wavelets and applications: Proc. Int. Conf., 287

10.1016/S0378-4371(98)00002-8

10.1016/0378-4371(94)00163-N

10.1016/S0098-3004(99)00117-X

10.1103/PhysRevLett.52.1661

10.1007/BF01009897

10.1023/A:1022355723781

Cheng Q., 1999, Proc. Annu. Conf. Int. Assoc. for Mathematical Geol., 245

10.1016/S0098-3004(99)00060-6

Cheng Q., 2000, GeoCanada 2000, Proc. GAC/MAC Meeting

Cheng Q., 2001, A multifractal and geostatistical method for modeling geochemical map patterns and geochemical anomalies. (In Chinese with English abstract.), J. Earth Sci., 26, 161

Cheng Q., 2004, A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns, Math. Geol., 36, 345, 10.1023/B:MATG.0000028441.62108.8a

Cheng Q., 2006, Geostatistics Banff 2004, 1017

10.1016/j.oregeorev.2006.10.002

10.5194/npg-14-293-2007

10.1007/BF02273520

Cheng Q., 2008, Singularity analysis of ore‐mineral and toxic trace elements in stream sediments, Comput. Geosci.

10.1016/0375-6742(94)90013-2

ESRI, 2000, ArcMap, Annual of ArcGIS

Evertsz C.J.G., 1992, Chaos and fractals, 922

10.1007/978-1-4899-2124-6

Frisch U., 1985, Turbulence and predictability in geophysical fluid dynamics and climate dynamics, 84

10.1016/0375-9601(83)90753-3

10.1103/PhysRevA.33.1141

Hamilton S.M., 1997, A high density lake sediment and water geochemical survey of 32 geographic townships in the Montreal River headwaters area, centered on Gowganda area

10.1016/0167-2789(83)90235-X

10.1007/BF00891050

10.1016/0098-3004(96)89522-7

Journel A.G., 1978, Mining geostatistics

Li Q., 2001, Fractal correction of well logging curves, J. China Univ. Geosci., 12, 272

10.2113/gseegeosci.II.4.479

10.1002/esp.1064

10.1007/3-540-05716-1_20

10.1017/S0022112074000711

10.1007/BF00874478

Panahi A., 2003, Modelling lake sediment geochemical distribution using principal component, indicator kriging and multifractal power‐spectrum analysis: A case study from Gowganda, Ontario, Geochem. Explor. Environ. Anal., 4, 1

Rudin W., 1988, Real and complex analysis

10.1029/JD092iD08p09693

Sornette D., 2004, Critical phenomena in natural sciences: Chaos, fractals, self‐organization, and disorder

10.2136/sssaj2005.0071

10.1017/CBO9781139174695

10.1029/2001WR000522

10.1023/B:MATG.0000041182.70233.47