Model order reduction assisted by deep neural networks (ROM-net)

Thomas A. Daniel1, Fabien Casenave1, Nissrine Akkari1, David Ryckelynck2
1SAFRAN Group
2Mines Paris - PSL (École nationale supérieure des mines de Paris)

Tóm tắt

Abstract

In this paper, we propose a general framework for projection-based model order reduction assisted by deep neural networks. The proposed methodology, calledROM-net, consists in using deep learning techniques to adapt the reduced-order model to a stochastic input tensor whose nonparametrized variabilities strongly influence the quantities of interest for a given physics problem. In particular, we introduce the concept ofdictionary-based ROM-nets, where deep neural networks recommend a suitable local reduced-order model from a dictionary. The dictionary of local reduced-order models is constructed from a clustering of simplified simulations enabling the identification of the subspaces in which the solutions evolve for different input tensors. The training examples are represented by points on a Grassmann manifold, on which distances are computed for clustering. This methodology is applied to an anisothermal elastoplastic problem in structural mechanics, where the damage field depends on a random temperature field. When using deep neural networks, the selection of the best reduced-order model for a given thermal loading is 60 times faster than when following the clustering procedure used in the training phase.

Từ khóa


Tài liệu tham khảo

Lumley J. The structure of inhomogeneous turbulent flows. Atm Turb Radio Wave Prop. 1967;1967:166–78.

Sirovich L. Turbulence and the dynamics of coherent structures, Parts I. II and III. Q Appl Math. 1987;45:561–90.

Chatterjee A. An introduction to the proper orthogonal decomposition. Curr Sci. 2000;78:808–17.

Casenave F, Akkari N, Bordeu F, Rey C, Ryckelynck D. A nonintrusive distributed reduced-order modeling framework for nonlinear structural mechanics–application to elastoviscoplastic computations. Int J Numer Methods Eng. 2020;121(1):32–53.

Barrault M, Maday Y, Nguyen NC, Patera AT. An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. Compt Rendus Mathemat. 2004;339(9):666–72.

Astrid P, Weiland S, Willcox K, Backx T. Missing point estimation in models described by proper orthogonal decomposition. Proc IEEE Conf Decis Control. 2005;53(10):1767–72.

Ryckelynck D. A priori hypereduction method: an adaptive approach. J Comput Phys. 2005;202(1):346–66.

Nguyen NC, Patera AT, Peraire J. A best points interpolation method for efficient approximation of parametrized functions. Internat J Numer Methods Engrg. 2008;73:521–43.

Chaturantabut S, Sorensen D. Discrete empirical interpolation for nonlinear model reduction. Decision and Control. In: proceedings of the 48th IEEE Conference 2009 held jointly with the 2009 28th Chinese control conference, CDC/CCC 2009. 2010; pp 4316–21.

Carlberg K, Farhat C, Cortial J, Amsallem D. The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows. J Comput Phys. 2013;242:623–47.

Farhat C, Avery P, Chapman T, Cortial J. Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int J Numer Methods Eng. 2014;98(9):625–62.

Hernandez JA, Caicedo MA, Ferrer A, Cortial J. Dimensional hyper-reduction of nonlinear finite element models via empirical cubature. Computer methods in applied mechanics and engineering. 2017;313:687–722.

Yano M, Patera AT. An LP empirical quadrature procedure for reduced basis treatment of parametrized nonlinear PDEs. Comput Methods Appl Mech Eng. 2018;344:1104–23.

Iollo A, Lombardi D. Advection modes by optimal mass transfer. Phys Rev E. 2014;89:022923. https://doi.org/10.1103/PhysRevE.89.022923.

Cagniart N, Maday Y, Stamm B. Model order reduction for problems with large convection effects. In: Chetverushkin B, Fitzgibbon W, Kuznetsov Y, Neittaanmäki P, Periaux J, Pironneau O, editors. Contributions to partial differential equations and applications. Computational methods in applied sciences, vol. 47. Berlin: Springer; 2019.

Casenave F, Akkari N. An error indicator-based adaptive reduced order model for nonlinear structural mechanics—application to high-pressure turbine blades. Math Comput Appl. 2019;24:2.

Amsallem D, Zahr M, Farhat C. Nonlinear model order reduction based on local reduced-order bases. Int J Numer Methods Eng. 2012;92:1–31.

Washabaugh K, Amsallem D, Zahr M, Farhat C. Nonlinear model reduction for CFD problems using local reduced order bases. In: 42nd AIAA fluid dynamics conference. 2012. https://doi.org/10.2514/6.2012-2686

Bellman RE. Adaptive control processes. Princeton: Princeton University Press; 1961.

Lieu T, Lesoinne M. Parameter adaptation of reduced order models for three-dimensional flutter analysis. AIAA Paper. 2004;2004:888.

Lieu T, Farhat C, Lesoinne M. POD-based aeroelastic analysis of a complete F-16 configuration: ROM adaptation and demonstration. AIAA Paper. 2005;2005:2295.

Lieu T, Farhat C. Adaptation of POD-based aeroelastic ROMs for varying Mach number and angle of attack: application to a complete F-16 configuration. AIAA Paper. 2005;2005:7666.

Lieu T, Farhat C, Lesoinne M. Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng. 2006;195:5730–42.

Lieu T, Farhat C. Adaptation of aeroelastic reduced-order models and application to an F-16 configuration. AIAA J. 2007;45:1244–57.

Amsallem D, Farhat C. Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 2008;46(7):1803–13.

Amsallem D, Farhat C. An online method for interpolating linear parametric reduced-order models. SIAM J Sci Comput. 2011;33(5):2169–98. https://doi.org/10.1137/100813051.

Mosquera R, Hamdouni A, El Hamidi A, Allery C. POD basis interpolation via Inverse distance weighting on Grassmann manifolds. Discr Contin Dyn Syst Series S. 2018;12(6):1743–59.

Mosquera R, El Hamidi A, Hamdouni A, Falaize A. Generalization of the Neville-Aitken interpolation algorithm on Grassmann manifolds: applications to reduced order model. 2019. https://arxiv.org/pdf/1907.02831.pdf.

Ling J, Templeton J, Kurzawski A. Reynolds averaged turbulence modeling using deep neural networks with embedded invariance. J Fluid Mech. 2016;807:155–66.

Lee K, Carlberg K. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. 2019. arxiv:1812.08373.

Nguyen F, Barhli SM, Munoz DP, Ryckelynck D. Computer vision with error estimation for reduced order modeling of macroscopic mechanical tests. Complexity. 2018;. https://doi.org/10.1155/2018/3791543.

Proudhon H, Moffat A, Sinclair I, et al. Three-dimensional characterisation and modelling of small fatigue corner cracks in high strength Al-alloys. Comput Rendus Phys. 2012;13:316–27. https://doi.org/10.1016/j.crhy.2011.12.005.

Buljac A, Shakoor M, Neggers J, Bernacki M, Bouchard PO, Helfen L, Morgeneyer TF, Hild F. Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging. Comput Mech. 2017;59:419–41.

Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. In: Proceedings of ICML’16, 478-487 (2016)

Guo X, Gao L, Liu X, Yin J. Improved deep embedded clustering with local structure preservation. In: Proceedings of IJCAI’17. 2017. 1753–59.

Moradi-Fard M, Thonet T. Deep k-means: jointly clustering with k-means and learning representations. 2018. arxiv:1806.10069.

Ye K, Lim LH. Schubert varieties and distances between subspaces of different dimensions. SIAM J Matrix Anal Appl. 2016;37(3):1176–97.

MacQueen JB. Some methods for classification and analysis of multivariate observations. In: Proceedings of 5-th Berkeley symposium on mathematical statistics and probability. 1967;1:281–97.

Park HS, Jun CH. A simple and fast algorithm for k-medoids clustering. Expert Syst Appl. 2009;36:3336–41.

Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014. arxiv:1412.6980.

Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22:1345–59. https://doi.org/10.1109/TKDE.2009.191.

Chen J, Young B, Uy B. Behavior of high strength structural steel at elevated temperatures. J Struct Eng. 2006;132(12):1948–54.

Mines ParisTech and ONERA the French aerospace lab. Zset: nonlinear material & structure analysis suite. http://www.zset-software.com (1981-present.)

Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.

Borg I, Groenen P. Modern multidimensional scaling—theory and applications. 2nd ed. Berlin: Springer; 2005.

de Leeuw J. Applications of convex analysis to multidimensional scaling. In: Barra JR, Brodeau F, Romier G, van Cutsem B, editors. Recent developments in statistics. Berlin: Springer; 1977. p. 133–45.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.

Haykin S. Neural networks—a comprehensive foundation. Second edition. 1999;351–91.

Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, eds. Advances in neural information processing systems 25. Curran Associates Inc; 2012. p. 1097–105. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arxiv:1409.1556

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: The IEEE conference on computer vision and pattern recognition (CVPR). 2016.

Chollet F, et al. Keras. 2015. https://keras.io

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org. 2015. https://www.tensorflow.org/

Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J, Chen T. Recent advances in convolutional neural networks. Patter Recogn. 2018;77:354–77.

Lin M, Chen Q, Yan S. Network in network. CoRR abs/1312.4400. 2013.

Lin T, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection. In: IEEE transactions on pattern analysis and machine intelligence. 2018.

Scarth C, et al. Random field simulation over curved surfaces: Applications to computational structural mechanics. Comput Methods Appl Mech Engrg. 2018;. https://doi.org/10.1016/j.cma.2018.10.026.

Mitchell JSB, Mount DM, Papadimitriou CH. The discrete geodesic problem. SIAM J Comput. 1987;16(4):647–68.

Surazhsky V, Surazhsky T, Kirsanov D, Gortler SJ, Hoppe H. Fast exact and approximate geodesics on meshes. ACM Trans Graph. 2005;24(3):553–60.

Kirsanov D, Malhotra G, Knock S. gdist 1.0.3. https://pypi.org/project/gdist/. 2013.