Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance
Tài liệu tham khảo
Rabaey, 2005, Microbial fuel cells: novel biotechnology for energy generation, Trends Biotechnol., 6, 291, 10.1016/j.tibtech.2005.04.008
Rabaey, 2007, Microbial ecology meets electrochemistry: electricity-driven and driving communities, ISME J., 1, 9, 10.1038/ismej.2007.4
Lovley, 2006, Bug juice: harvesting electricity with microorganisms, Nat. Rev., Microbiol., 4, 497, 10.1038/nrmicro1442
Katz, 2003, Biochemical fuel cells, 355
Ieropoulos, 2008, Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability, Int. J. Energy Res., 32, 1228, 10.1002/er.1419
Sakai, 2007, Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine, Biotechnol. Bioeng., 98, 340, 10.1002/bit.21427
Rozendal, 2006, Principle and perspectives of hydrogen production through biocatalyzed electrolysis, Int. J. Hydrogen Energy, 31, 1632, 10.1016/j.ijhydene.2005.12.006
Cheng, 2007, Sustainable and efficient biohydrogen production via electrohydrogenesis, Proc. Natl. Acad. Sci., 104, 10.1073/pnas.0706379104
Chang, 2005, Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors, Biosens. Bioelectron., 20, 1856, 10.1016/j.bios.2004.06.003
Logan, 2006, Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016
Rozendal, 2008, Towards practical implementation of bioelectrochemical wastewater treatment, Trends Biotechnol., 26, 450, 10.1016/j.tibtech.2008.04.008
Gil, 2003, Operational parameters affecting the performance of a mediator-less microbial fuel cell, Biosens. Bioelectron., 18, 327, 10.1016/S0956-5663(02)00110-0
Reguera, 2005, Extracellular electron transfer via microbial nanowires, Nature, 435, 1098, 10.1038/nature03661
Gorby, 2006, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, Proc. Natl. Acad. Sci., 103, 11358, 10.1073/pnas.0604517103
Roller, 1984, Electron-transfer coupling in microbial fuel cells. 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria, J. Chem. Technol. Biotechnol. B Biotechnol., 34, 3, 10.1002/jctb.280340103
Rabaey, 2004, Biofuel cells select for microbial consortia that selfmediate electron transfer, Appl. Environ. Microb., 70, 5373, 10.1128/AEM.70.9.5373-5382.2004
Rabaey, 2005, Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol., 39, 3401, 10.1021/es048563o
Zhang, 1995, Modeling of a microbial fuel cell process, Biotechnol. Lett., 17, 809, 10.1007/BF00129009
Picioreanu, 2007, A computational model for biofilm-based microbial fuel cells, Water Res., 41, 2921, 10.1016/j.watres.2007.04.009
Picioreanu, 2008, Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion, Water Sci. Technol., 57, 965, 10.2166/wst.2008.095
Kato-Marcus, 2007, Conduction-based modeling of the biofilm anode of a microbial fuel cell, Biotechnol. Bioeng., 98, 1171, 10.1002/bit.21533
Torres, 2008, Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria, Biotechnol. Bioeng., 100, 872, 10.1002/bit.21821
Rozendal, 2006, Effects of membrane cation transport on pH and microbial fuel cell performance, Environ. Sci. Technol., 40, 5206, 10.1021/es060387r
Newman, 1991
Picioreanu, 2002, A mathematical model for initiation of microbiologically influenced corrosion by differential aeration, J. Electrochem. Soc., 149, B211, 10.1149/1.1470657
Picioreanu, 2004, Particle-based multidimensional multispecies model, Appl. Environ. Microbiol., 70, 3024, 10.1128/AEM.70.5.3024-3040.2004
Xavier, 2005, A framework for multidimensional modelling of activity and structure of multispecies biofilms, Environ. Microbiol., 7, 1085, 10.1111/j.1462-2920.2005.00787.x
Kreft, 2001, Individual-based modelling of biofilms, Microbiol.-SGM, 147, 2897, 10.1099/00221287-147-11-2897
Bennetto, 1981, Rates of reduction of phenothiazine ‘redox’ dyes by E. coli., Chem. Ind. Nov., 776
Heijnen, 1999, Bioenergetics of microbial growth, 267
Batstone, 2002
Picioreanu, 2005, Multidimensional modelling of anaerobic granules, Water Sci. Technol., 52, 501, 10.2166/wst.2005.0559
Batstone, 2006, Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms, Water Res., 40, 3099, 10.1016/j.watres.2006.06.014
P. Vanysek, CRC handbook of chemistry and physics, 82nd ed., CRC Press LLC, Boca Raton, 2001, pp. 5–95 and 6–194.
Picioreanu, 2001, Two-dimensional model of biofilm detachment caused by internal stress from liquid flow, Biotechnol. Bioeng., 72, 205, 10.1002/1097-0290(20000120)72:2<205::AID-BIT9>3.0.CO;2-L
Xavier, 2005, A general description of detachment for multidimensional modelling of biofilms, Biotechnol. Bioeng., 91, 651, 10.1002/bit.20544
Graf von der Schulenburg, 2009, Three-dimensional simulations of biofilm growth in porous media, AIChE J., 55, 494, 10.1002/aic.11674
Sell, 1989, Use of an oxygen gas diffusion cathode and a three-dimensional packed bed anode in a bioelectrochemical fuel cell, Appl. Microbiol. Biotechnol., 31, 211, 10.1007/BF00262465