Mixing in the Black Sea detected from the temporal and spatial variability of oxygen and sulfide – Argo float observations and numerical modelling

Biogeosciences - Tập 11 Số 20 - Trang 5707-5732
Emil V. Stanev1, Yun He2,3, Joanna Staneva1, E. V. Yakushev4
1Helmholtz-Zentrum Geesthacht, Max-Planck- Straße 1, 21502 Geesthacht, Germany.
2Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
3Institut für Geowissenschaften, Universität Kiel, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany
4Norwegian Institute for Water Research, Gaustadalleén 21, 0349 Oslo, Norway

Tóm tắt

Abstract. The temporal and spatial variability of the upper ocean hydrochemistry in the Black Sea is analysed using data originating from profiling floats with oxygen sensors and carried out with a coupled three-dimensional circulation-biogeochemical model including 24 biochemical state variables. Major focus is on the dynamics of suboxic zone which is the interface separating oxygenated and anoxic waters. The scatter of oxygen data seen when plotted in density coordinates is larger than those for temperature, salinity and passive tracers. This scatter is indicative of vigorous biogeochemical reactions in the suboxic zone, which acts as a boundary layer or internal sink for oxygen. This internal sink affects the mixing patterns of oxygen compared to the ones of conservative tracers. Two different regimes of ventilation of pycnocline were clearly identified: a gyre-dominated (cyclonic) regime in winter and a coastal boundary layer (anticyclonic eddy)-dominated regime in summer. These contrasting states are characterized by very different pathways of oxygen intrusions along the isopycnals and vertical oxygen conveyor belt organized in multiple-layered cells formed in each gyre. The contribution of the three-dimensional modelling to the understanding of the Black Sea hydro-chemistry, and in particular the coast-to-open-sea mixing, is also demonstrated. Evidence is given that the formation of oxic waters and of cold intermediate waters, although triggered by the same physical process, each follow a different evolution. The difference in the depths of the temperature minimum and the oxygen maximum indicates that the variability of oxygen is not only just a response to physical forcing and changes in the surface conditions, but undergoes its own evolution.

Từ khóa


Tài liệu tham khảo

Basturk, O., Saydam, C., Salihoglu, I., Eremeeva, L. V., Konovalov, S. K., Stoyanov, A., Dimitrov, A., Cociasu, A., Dorogan, L., and Altabet, M.: Vertical variations in the principle chemical properties of the Black Sea in the autumn of 1991, J. Marine Chem., 45, 149–165, 1994.

Belyaev, V. I., Sovga, E. E., and Lyubartseva, S. P.: Modelling the hydrogen sulfide zone of the Black Sea. Ecol. Model., 13, 51–59, 1997.

Blatov, A. S., Bulgakov, N. P., Ivanov, V. A., Kosarev, A. N., and Tujilkin, V. S.: Variability of Hydrophysical Fields in the Black Sea, Gidrometeoizdat, Leningrad, 240 pp., 1984 (in Russian).

Buesseler, K., Michaels, A., Siegel, D., and Knap, A.: A three dimensional time-dependent approach to calibrating sediment trap fluxes, Global Biogeochem. Cy., 8, 179–193, 1994.

Burchard, H. and Bolding, K.: GETM – a General Estuarine Transport Model, Scientific Documentation, European Commission, Report EUR 20253, 155 pp., 2002.

Burchard, H., Bolding, K., and Villareal, M. R.: GOTM, A General Ocean Turbulence Model. Theory, Applications and Test Cases, European Commission Report EUR 18745 EN: 103 pp., 1999.

Capet, A., Beckers, J.-M., and Grégoire, M.: Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf – is there any recovery after eutrophication?, Biogeosciences, 10, 3943–3962, https://doi.org/10.5194/bg-10-3943-2013, 2013.

Debolskaya, E. I. and Yakushev, E. V.: The role of suspended manganese in hydrogen sulfide oxidation in the Black Sea redox-zone, Water Resour., 29, 72–77, 2002.

Deuser, W. G.: Evolution of anoxic of anoxic conditions in the Black Sea during Holocene, The Black Sea-Geology, Chemistry and Biology, 2, 133–136, 1974.

Fonselius, S. H.: Phosphorus in the Black Sea, in: The Black Sea – Geology, Chemistry and Biology, edited by: Degens, E. J. and Koss, D. A., Amer. Ass. of Petrol. Geologists, Tusla, 144–150, 1974.

Gargett, A. E.: Vertical eddy diffusivity in the ocean interior, J. Mar. Res., 42, 359–393, 1984.

Gnanadesikan, A.: A simple predictive model for the structure of the oceanic pycnocline, Science, 283, 2077–2079, 1999.

Gregg, C. M., Ozsoy, E., and Latif, M. A.: Quasi-steady exchange flow in the Bosphorus, Geophys. Res. Lett., 26, 83–86, 1999.

Gregg, M. C. and Yakushev, E.: Surface ventilation of the Black Sea's cold intermediate layer in the middle of the western gyre, Geophys. Res. Lett., 32, L03604, https://doi.org/10.1029/2004GL021580, 2005.

Grégoire, M. and Lacroix, G.: Study of the oxygen budget of the Black Sea waters using a 3D coupled hydrodynamical-biogeochemical model, J. Marine Syst., 31, 175–202, 2001.

Grégoire, M. and Lacroix, G.: Exchange processes and nitrogen cycling on the shelf and continental slope of the Black Sea basin, Global Biogeochem. Cy., 17, 1073, https://doi.org/10.1029/2002GB001882, 2003.

Grégoire, M. and Soetaert, K. E. R.: Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: a biogeochemical model of the whole water column coupling the oxic and anoxic parts, Ecol. Model., 221, 2287–2301, 2010.

Grégoire, M., Beckers, J. M., Nihoul, J. C. J., and Stanev, E.: Coupled hydrodynamic ecosystem model of the Black Sea at basin scale, in: Sensitivity to Change: Black Sea, Baltic Sea and North Sea, edited by: Ozsoy, E. and Mikaelyan, A., NATO ASI Series, Vol. 27, Kluwer Academic Publishers, 487–499, 1997.

Grégoire, M., Beckers, J. M., Nihoul, J. C. J., and Stanev, E.: Reconnaissance of the main Black Sea's ecohydrodynamics by means of a 3D interdisciplinary model, J. Marine Syst., 16, 85–106, 1998.

Grégoire, M., Raick, C., and Soetaert, K.: Numerical modeling of the deep Black Sea ecosystem functioning during the late 80's (eutrophication phase) Prog. Oceanogr., 76, 3, 286–333, 2008.

He, Y., Stanev, E., Yakushev, E., and Staneva, J.: Black Sea biogeochemistry: response to decadal atmospheric variability during 1960–2000 inferred from numerical modeling, Mar. Environ. Res., 77, 90–102, 2012.

Jørgensen, B. B., Fossing, H., Wirsen, C. O., and Jannasch, H. W.: Sulfide oxidation in the anoxic Black Sea chemocline, Deep-Sea Res., 38, S1083–S1104, 1991.

Konovalov, S. K. and Murray, J. W.: Variations in the chemistry of the Black Sea on a time scales of decades (1960–1995), J. Marine Syst., 31, 217–243, 2001.

Konovalov, S. K., Luther, III, G. W., Friederich, G. E., Nuzzio, D. B., Tebo, B. M., Murray, J. W., Oguz, T., Glazer, B., Trouwborst, R. E., Clement, B., Murray, K. J., and Romanov, A. S.: Lateral injection of Oxygen with the Bosporus plume fingers of oxidizing potential in the Black Sea, Limnol. Oceanogr., 48, 2369–2376, 2003.

Konovalov, S. K., Murray, J., and Luther III, G. W.: Basic processes of Black Sea biogeochemistry, Oceanography, 18, 24–35, 2005.

Konovalov, S., Murray, J., Luther, G., and Tebo, B.: Processes controlling the redox budget for the oxic/anoxic water column of the black sea, Deep-Sea Res. Pt. II, 53, 1817–1841, 2006.

Korotaev, G., Oguz, T., and Riser, S.: Intermediate and deep currents of the Black Sea obtained from autonomous profiling floats, Deep Sea Res. Pt. II, 53, 1901–1910, 2006.

Lancelot, C. L., Staneva, J. V., Van Eeckhout, D., Beckers, J.-M., and Stanev, E. V.: Modelling the Danube-influenced north-western continental shelf of the Black Sea. II: Ecosystem response to changes in nutrient delivery by the Danube River after its damming in 1972, Estuar. Coast. Shelf S., 54, 473–499, 2002.

Lewis, B. L. and Landing, W. N.: The biogeochemistry of manganese and iron in the Black Sea, Deep-Sea Res., 38, S773–S805, 1991.

Liss, P. S.: Conservative and non-conservative behavior of dissolved constituents during estuarine mixing, in: Estuarine chemistry, edited by: Burton, J. D. and Liss, P. S., Academic press, London, UK, 93–130, 1976.

Loder, T. C. and Reichard, R. P.: The dynamics of conservative mixing in estuaries, Estuaries, 4, 64–69, 1981.

McDougall, T. J.: The relative roles of diapycnal and isopycnal mixing on subsurface water mass conversion, J. Phys. Oceanogr., 14, 1577–1589, 1984.

Munk, W. H.: Abyssal recipes, Deep-Sea Res., 13, 707–730, 1966.

Murray, J. W., Jannasch, H. W., Honjo, S., Anderson, R. F., Reeburgh, W. S., Top, Z., Friederich, G. E., Codispoti, L. A., and Izdar, E.: Unexpected changes in the oxic/anoxic interface in the Black Sea, Nature, 338, 411–413, 1989.

Murray, J. M., Codispoti, L. A., and Friederich, G. E.: Oxidiation–reduction encironments: the suboxic zone in the Black Sea, in: Aquatic Chemistry: Interfacial and Interspecies Process, edited by: Huang, C. P., O'Melia, C. R., and Morgan, J. J., Adv. Chem. Ser., No. 224, 1995.

Murray, J. W., Lee, B.-S., Bullister, J., and Luther III, G. W.: The suboxic zone of the Black Sea, in: Environmental Degradation of the Black Sea: Challenges and Remedies, edited by: Besiktepe, S., Unluata, U., and Bologa, A., NATO ASI Series 2, 75–92, 1999.

Neretin, L. N., Volkov, I. I., Bottcher, M. E., and Grinenko, V. A.: A sulfur budget for the Black Sea anoxic zone, Deep-Sea Res. Pt. I, 48, 2569–2593, 2001.

Oguz, T., Ducklow, H., Malanotte-Rizzoli, P., Tugrul, S., Nezlin, N., and Unluata, U.: Simulation of annual plankton productivity cycle in the Black Sea by a one-dimensional physical-biological model, J. Geophys. Res., 101, 16585–16599, 1996.

Oguz, T., Ivanov, L. I., and Besiktepe, S.: Circulation and hydrographic characteristics of the Black Sea, in: The Sea, vol. 14, edited by: Robinson, A. R. and Brink, K. H., Harvard University Press, chap. 33, 1331–1369, 1998.

Oguz, T., Ducklow, H. W., and Malanotte-Rizzoli, P.: Modeling distinct vertical biogeochemical structure of the Black Sea: dynamical coupling of the oxic, suboxic and anoxic layers, Global Biogeochem. Cy., 14, 1331–1352, 2000.

Oguz, T., Murray, J. W., and Callahan, A.: Modeling redox cycling across the suboxic–anoxic interface zone in the Black Sea, Deep-Sea Res. Pt. I, 48, 761–787, 2001.

Oguz, T., Malanotte-Rizzoli, P., Ducklow, H. W., and Murray, J. W.: Interdisciplinary studies integrating the Black Sea biogeochemistry and circulation dynamics, Oceanography, 15, 4–11, 2002.

Oguz, T., Tugrul, S., Kideys, A. E., Ediger, V., and Kubilay, N.: Physical and biogeochemical characteristics of the Black Sea, in: The Sea, vol. 14, chap. 33, 1331–1369, 2005.

Ovchinnikov, I. M. and Popov, Yu. I.: Evolution of the Cold Intermediate Layer in the Black Sea, Oceanology, 27, 555–560, 1987.

Peña, M. A., Katsev, S., Oguz, T., and Gilbert, D.: Modeling dissolved oxygen dynamics and hypoxia, Biogeosciences, 7, 933–957, https://doi.org/10.5194/bg-7-933-2010, 2010.

Peneva, E. L. and Stips, A. K.: Numerical simulations of Black Sea and adjoined Azov Sea, forced with climatological and meteorological reanalysis data, Technical report, EUR21504EN, European Commission, Ispra, 2005.

Rozanov, A. G.: Redox stratification of the Black Sea water, Oceanography, 35, 544–549, 1995.

Saydam, C., Tugrul, S., Baturk, O., and Oguz, T.: Identification of the oxic/anoxic interface by isopycnal surfaces in the Black Sea, Deep-Sea Res., 40, 1405–1412, 1993.

Schneider, B., Bausch, G., Kubsch, H., and Peterson, I.: Accumulation of total CO2 during stagnation in the Baltic deep water and its relationship to nutrient and oxygen concentrations, Mar. Chem., 77, 277–291, 2002.

Shaffer, G.: Phosphorus pumps and shuttles in the Black Sea, Letters to Nature, 321, 515–517, 1986.

Skopintsev, B. A.: Formirovanie Sovremennogo Himicheskogo Sostava vod Chernogo Morya (Evolution of the Black Sea Chemical Structure), Gidrometeoizdat, Leningrad, 336 pp., 1975.

Sijp, W. P., Bates, M., and England, M. H.: Can isopycnal mixing control the stability of the thermohaline circulation in ocean climate models? J. Climate, 19, 5637–5651, 2006.

Sorokin, Y. I.: Chernoe More: Priroda i Resursi (The Black Sea: the Nature and the Resources), Nauka, Moscow, 217 pp., 1982.

Spenser, D. W. and Brewer, P. G.: Vertical advection diffusion and redox potentials as controls on the distribution of manganese and other trace metals Dissolved in waters of the Black Sea, J. Geophys. Res., 76, 5877–5892, https://doi.org/10.1029/JC076i024p05877, 1971.

Stanev, E. V.: Numerical modelling of the circulation and the hydrogen sulfide and oxygen distribution in the Black Sea, Deep-Sea Res., 36, 1053–1065, 1989.

Stanev, E. V.: Understanding Black Sea dynamics: overview of recent numerical modelling, Oceanography, 18, 56–75, 2005.

Stanev, E. V., Bowman, M. J., Peneva, E. L., and Staneva, J. V.: Control of Black Sea intermediate water mass formation by dynamics and topography: comparison of numerical simulations, surveys and satellite data, J. Mar. Res., 61, 59–99, 2003.

Stanev, E. V., He, Y., Grayek, S., and Boetius, A.: Oxygen dynamics in the Black Sea as seen by Argo profiling floats, Geophys. Res. Lett., 40, 3085–3090, https://doi.org/10.1002/grl.50606, 2013.

Stanev, E. V. and Kandilarov, R.: Sediment dynamics in the Black Sea: numerical modelling and remote sensing observations, Ocean Dynam., 62, 533–553, 2012.

Stanev, E. V., Simeonov, J. A., and Peneva, E. L.: Ventilation of Black Sea pycnocline by the Mediterranean plume, J. Marine Syst., 31, 77–97, 2001.

Stanev, E. V. and Staneva, J. V.: The impact of the baroclinic eddies and basin oscillations on the transitions between different quasi-stable states of the Black Sea circulation, J. Mar. Sys., 24, 3–26, 2000.

Stanev, E. V. and Staneva, J. V.: The sensitivity of the heat exchange at sea surface to meso and sub-basin scale eddies. Model study for the Black Sea, Dyn. Atmos. Ocean, 33, 163–189, 2001.

Stanev, E. V., Staneva, J., Bullister, J. L., and Murray, J. W.: Ventilation of the Black Sea pycnocline. parameterization of convection, numerical simulations and validations against observed chlorofluorocarbon data, Deep-Sea Res., 51, 2137–2169, 2004.

Staneva, J. V., Dietrich, D., Stanev, E., and Bowman, M.: Rim current and coastal eddy mechanisms in an eddy-resolving Black Sea general circulation model, J. Mar. Sys., 3, 137–157, 2001.

Staneva, J. V., Stanev, E. V., and Oguz, T.: The Impact of Atmospheric Forcing and Water Column Stratification on the yearly Plankton Cycle, in: Ecosystem modelling as a management tool for the Black Sea, edited by: Ivanov, L. and Oguz, T., 2, 301–322, Kluwer academic publishers, 1998.

Sverdrup, H. U., Johnson, M. W., and Fleming, R. H.: The Oceans, Their Physics, Chemistry, and General Biology, New York, Prentice-Hall, 1942.

Tugrul, S., Murray, J. W., Friederich, G. E., and Salihoglu, L.: Spatial and temporal variability in the chemical properties of the oxic and suboxic layers of the Black Sea, J. Mar. Sys., 135, 29–43, 2014.

UNESCO: Progress on oceanographic tables and standards 1983–1986: work and recommendations of the UNESCO/SCOR/ICES/IAPSO Joint Panel, UNESCO Technical papers in Marine Science, 50, UNESCO, Paris, 59 pp., 1986.

Vinogradov, M. E. and Nalbandov, Y. P.: Dependence of physical, chemical and biological parameters in pelagic ecosystem of the Black Sea upon the water density, Oceanology, 30, 769–777, 1990.

Walin, G.: On the relation between sea–surface heat flow and thermal circulation in the ocean, Tellus, 34, 187–195, 1982.

Wüst, G.: Die stratosphäre des Atlantischen Ozeans. Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs und Vermessungsschiff, Meteor., 1925–1927, Gruyter & Co., 109–288, 1935.

Yakushev, E. V.: Numerical modeling of transformation of nitrogen compounds in the redox zone of the Black Sea, Oceanology, 32 173–177, 1992.

Yakushev, E. V.: Mathematical modeling modeling of oxygen, nitrogen, sulfur and manganese cycling in the Black Sea, in: Ecosystem Modeling as a Management Tool for the Black Sea, vol. 2, edited by: Ivanov, L. and Oguz, T., NATO ASI Series, 2-Environmental Security-47, Kluwer Academic Publishers, 373–384, 1998.

Yakushev, E. V. and Neretin, L. N.: One-dimensional modeling of nitrogen and sulfur cycles in the aphotic zones of the Black and Arabian Seas, Global Biogeochem. Cy., 11, 401–414, 1997.

Yakushev, E. V., Pollehne, F., Jost, G., Kuznetsov, I., Schneider, B., and Umlauf, L.: Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model, Mar. Chem., 107, 388–410, 2007.

Yakushev, E. V., Chasovnikov, V. K., Murray, J. W., Pakhomova, S. V., Podymov, O. I., and Stunzhas, P. A.: Vertical hydrochemical structure of the Black Sea, in: The Black Sea Environment, edited by: Kostyanoy, A. G. and Kosarev, A. N., The Handbook of Environmental Chemistry, vol. 5, Springer, Berlin, 277–307, 2008.

Yakushev, E., Pakhomova, S., Sørenson K., and Jens, S.: Importance of the different manganese species in the formation of water column redox zones: observations and modelling, Mar. Chem., 117, 59–70, 2009.

Zika, J., McDougall, T. J., and Sloyan, B. M.: A tracer-contour inverse method for estimating ocean circulation and mixing, J. Phys. Oceanogr., 40, 26–47, 2010.

Zika, J., Sloyan, B. M., and McDougall, T. J.: Diagnosing the Southern Ocean overturning from tracer fields, J. Phys. Oceanogr., 39, 2926–2940, 2009.