Giới Hạn Thời Gian Trộn Qua Các Chuỗi Nút Kẹp

Journal of Statistical Physics - Tập 173 Số 3 - Trang 845-871 - 2018
Addario-Berry, Louigi1, Roberts, Matthew I.2
1Department of Mathematics and Statistics, McGill University, Montreal, Canada
2Department of Mathematical Sciences, University of Bath, Bath, UK

Tóm tắt

Chúng tôi cung cấp các giới hạn trên mới cho thời gian trộn của các chuỗi Markov hữu hạn tổng quát. Chúng tôi sử dụng các giới hạn này để cho thấy rằng thời gian trộn theo biến thể tổng quát là ổn định dưới sự đồng nhất thô đối với các đồ thị bậc giới hạn có hình dáng gần giống như cây.

Từ khóa

#thời gian trộn #chuỗi Markov #đồng nhất thô #đồ thị bậc giới hạn #biến thể tổng quát

Tài liệu tham khảo

citation_journal_title=J. Lond. Math. Soc; citation_title=Some inequalities for reversible Markov chains; citation_author=D Aldous; citation_volume=25; citation_issue=2; citation_publication_date=1982; citation_pages=564-576; citation_doi=10.1112/jlms/s2-25.3.564; citation_id=CR1 Aldous, D., James, A.F.: Reversible Markov chains and random walks on graphs (2002). Unfinished monograph, recompiled 2014. http://www.stat.berkeley.edu/~aldous/RWG/book.html Benjamini, I.: Coarse geometry and randomness. In: École d’Été de Probabilités de Saint-Flour XLI—2011. Lecture Notes in Mathematics, vol. 2100. Springer, Berlin (2013) Diestel, R., Müller, M.: Connected tree-width. Combinatorica. http://arxiv.org/abs/1211.7353 (to appear) citation_journal_title=Ann. Math.; citation_title=Cover times, blanket times, and majorizing measures; citation_author=J Ding, JR Lee, Y Peres; citation_volume=175; citation_issue=3; citation_publication_date=2012; citation_pages=1409-1471; citation_doi=10.4007/annals.2012.175.3.8; citation_id=CR5 citation_journal_title=Electron. Commun. Probab.; citation_title=Sensitivity of mixing times; citation_author=J Ding, Y Peres; citation_volume=18; citation_publication_date=2013; citation_pages=1-6; citation_doi=10.1214/ECP.v18-2765; citation_id=CR6 citation_journal_title=Probab. Theory Relat. Fields; citation_title=Faster mixing and small bottlenecks; citation_author=N Fountoulakis, BA Reed; citation_volume=137; citation_issue=3; citation_publication_date=2007; citation_pages=475-486; citation_id=CR7 citation_journal_title=Electron. J. Probab; citation_title=Mixing time bounds via the spectral profile; citation_author=S Goel, R Montenegro, P Tetali; citation_volume=11; citation_issue=1; citation_publication_date=2006; citation_pages=1-26; citation_doi=10.1214/EJP.v11-300; citation_id=CR8 citation_journal_title=Proc. Am. Math. Soc.; citation_title=Tight inequalities among set hitting times in Markov chains; citation_author=S Griffiths, R Kang, R Oliveira, V Patel; citation_volume=142; citation_issue=9; citation_publication_date=2014; citation_pages=3285-3298; citation_doi=10.1090/S0002-9939-2014-12045-4; citation_id=CR9 Hermon, J.: On sensitivity of uniform mixing times. Ann. Inst. Henri Poincaré Probab. Stat. http://arxiv.org/abs/1607.01672 (to appear) Hermon, J., Peres, Y.: A characterization of $${L}_2$$ mixing and hypercontractivity via hitting times and maximal inequalities. Probab. Theory Relat. Fields. http://arxiv.org/abs/1609.07557 (to appear) Jerrum, M., Sinclair, A.: Conductance and the rapid mixing property for markov chains: the approximation of permanent resolved. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 235–244. ACM (1988) citation_journal_title=ALEA; citation_title=On the precision of the spectral profile; citation_author=G Kozma; citation_volume=3; citation_publication_date=2007; citation_pages=321-329; citation_id=CR13 citation_title=Markov Chains and Mixing Times; citation_publication_date=2009; citation_id=CR14; citation_author=DA Levin; citation_author=Y Peres; citation_author=EL Wilmer; citation_publisher=American Mathematical Society Lovász, L., Kannan, R.: Faster mixing via average conductance. In: Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing Lovász, L., Winkler, P.: Efficient stopping rules for Markov chains. In: Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing, pp. 76–82. ACM (1995) citation_journal_title=J. Aust. Math. Soc.; citation_title=Random walks on random trees; citation_author=JW Moon; citation_volume=15; citation_issue=01; citation_publication_date=1973; citation_pages=42-53; citation_doi=10.1017/S144678870001274X; citation_id=CR17 citation_journal_title=Probab. Theory Relat. Fields; citation_title=Evolving sets, mixing and heat kernel bounds; citation_author=B Morris, Y Peres; citation_volume=133; citation_issue=2; citation_publication_date=2005; citation_pages=245-266; citation_doi=10.1007/s00440-005-0434-7; citation_id=CR18 citation_journal_title=Electron. J. Probab.; citation_title=Mixing and hitting times for finite Markov chains; citation_author=RI Oliveira; citation_volume=17; citation_issue=70; citation_publication_date=2012; citation_pages=1-12; citation_id=CR19 citation_journal_title=J. Theor. Probab.; citation_title=Mixing times are hitting times of large sets; citation_author=Y Peres, P Sousi; citation_volume=42; citation_publication_date=2013; citation_pages=1-32; citation_id=CR20