Mixed‐Model QSAR at the Glucocorticoid Receptor: Predicting the Binding Mode and Affinity of Psychotropic Drugs

ChemMedChem - Tập 4 Số 1 - Trang 100-109 - 2009
Morena Spreafico1, Beat Ernst1, Markus A. Lill2, Martin Smieško1, Angelo Vedani1
1Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland, Fax: (+41) 61‐267‐1552
2Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 USA

Tóm tắt

Abstract

The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily that affects immune response, development, and metabolism in target tissues. Glucocorticoids are widely used to treat diverse pathophysiological conditions, but their clinical applicability is limited by side effects. A prediction of the binding affinity toward the GR would be beneficial for identifying glucocorticoid‐mediated adverse effects triggered by drugs or chemicals. By identifying the binding mode to the GR using flexible docking (software Yeti) and quantifying the binding affinity through multidimensional QSAR (software Quasar), we validated a model family based on 110 compounds, representing four different chemical classes. The correlation with the experimental data (cross‐validated r2=0.702; predictive r2=0.719) suggests that our approach is suited for predicting the binding affinity of related compounds toward the GR. After challenging the model by a series of scramble tests, a consensus approach (software Raptor), and a prediction set, it was incorporated into our VirtualToxLab and used to simulate and quantify the interaction of 24 psychotropic drugs with the GR.

Từ khóa


Tài liệu tham khảo

10.1146/annurev.biochem.68.1.559

T. Damstra S. Barlow A. Bergman R. Kavlock G. Van der Kraak Global Assessment of the State‐of‐the‐Science of Endocrine Disruptors IPCS‐WHO 2002 p. 1.

McLachlan J. A., 1996, Am. Sci., 84, 452

10.1289/ehp.01109245

10.1289/ehp.98106769

URL:http://www.epa.gov/oscpmont/oscpendo/pubs/edspoverview/chronology.htm(access date: October 16 2008).

URL:http://www.nrp50.ch/(access date: October 16 2008).

10.1124/pr.58.4.9

 

10.1016/0092-8674(95)90201-5

10.1016/S0092-8674(00)81177-0

10.1164/ajrccm.157.3.157315

10.1056/NEJMra050541

 

10.1021/jm000986n

10.1021/jm011005p

10.1021/jm049687e

10.1021/jm040827u

 

10.14573/altex.2007.3.153

10.2533/chimia.2008.322

10.1016/S0092-8674(02)00817-6

URL:http://www.rcsb.org/pdb(access date: October 16 2008).

 

10.1021/ja00168a021

URL:http://www.biograf.ch/downloads/yeti.pdf(access date: October 16 2008).

 

10.1016/S0039-128X(03)00030-8

10.1021/jm010228c

10.1021/jm010367u

10.1021/jm030585i

10.1016/j.jsbmb.2004.10.009

10.1016/j.bmcl.2005.03.027

10.1016/S1056-8719(02)00166-1

10.1021/ja00315a051

10.1002/jcc.540110405

10.1007/BF00117280

10.1007/978-3-642-81265-1_4

Varied notations are observed in the literature. Herein training set refers to the compounds used to generate the model and test set to those predicted by the model. The test set was subsequently used to select the best model among different boundary conditions for the simulations. In contrast our prediction set refers to compounds solely tested by the final model.

10.1002/cmdc.200600212

10.1021/jm050185q

10.1142/9789812778789_0020

10.1021/jm060999m

10.1021/jm030640n

10.1021/jm050403f

10.1002/9783527615452.ch5

10.1016/j.bmcl.2004.07.052

URL:http://www.biograf.ch/downloads/VirtualToxLab.pdf(access date: October 16 2008).

URL:http://www.biograf.ch/data/projects/virtualtoxlab_results.php(access date: October 16 2008).

URL:http://www.en.wikipedia.org/wiki(access date: October 16 2008).

10.1007/BF00451689

Vedder H., 1999, J. Psychiatr. Res., 33

10.1038/sj.npp.1300195

10.1016/j.neuroscience.2005.08.089

10.1016/j.molbrainres.2004.06.033

10.1210/en.2004-0147

10.1177/02698811030173008

10.1038/sj.npp.1300862

 

10.1007/s10578-007-0081-6

10.1038/sj.bjc.6600013

 

10.1002/jps.20438

10.1021/jm050345y

10.1016/j.toxlet.2007.06.011